137 research outputs found

    Intestinal crypts reproducibly expand in culture

    Get PDF
    In vitro growth techniques for intestinal crypts and single intestinal stem cells have been recently described, but several questions of translational importance remain unaddressed. The purpose of this study was to: first, evaluate if intestinal crypts reproducibly expand in vitro; second, determine the impact of age and region of intestine on crypt growth in vitro; and third, determine the effects of cryopreservation on crypt growth in vitro

    Intestinal stem cells remain viable after prolonged tissue storage

    Get PDF
    Intestinal stem cells (ISCs) are responsible for renewal of the epithelium both during normal homeostasis and following injury. As such they have significant therapeutic potential. However, it is unknown whether ISCs can survive tissue storage. We hypothesized that, although the majority of epithelial cells may die, ISCs would remain viable for at least 24 h at 4°C. To explore this hypothesis, jejuni of C57Bl6/J or Lgr5-LacZ mice were removed and either processed immediately or placed in phosphate buffered saline (PBS) at 4°C. Delayed isolations of epithelia were performed after 24, 30, or 48 h storage. At the light microscope level, despite extensive apoptosis of villus epithelial cells, small intestinal crypts remained morphologically intact through 30 h and ISCs were identifiable via Lgr5-LacZ positivity. Electron microscopy showed that ISCs retain high integrity through 24 h. When assessed by flow cytometry, ISCs were more resistant to degeneration than the rest of the epithelium, including neighboring Paneth cells, with higher viability across all time points. Culture of isolated crypts showed no loss of capacity to form complex enteroids after 24 h tissue storage, with efficiencies after 7 days of culture remaining above 80%. By 30 h storage, efficiencies declined but budding capability was retained. We conclude that, with delay in isolation, ISCs remain viable and retain their proliferative capacity. In contrast, the remainder of the epithelium, including the Paneth cells, exhibits degeneration and programmed cell death. If these findings are recapitulated with human tissue, storage at 4°C may offer a valuable temporal window for harvest of crypts or ISCs for therapeutic application

    Expansion of Intestinal Epithelial Stem Cells during Murine Development

    Get PDF
    Murine small intestinal crypt development is initiated during the first postnatal week. Soon after formation, overall increases in the number of crypts occurs through a bifurcating process called crypt fission, which is believed to be driven by developmental increases in the number of intestinal stem cells (ISCs). Recent evidence suggests that a heterogeneous population of ISCs exists within the adult intestine. Actively cycling ISCs are labeled by Lgr5, Ascl2 and Olfm4; whereas slowly cycling or quiescent ISC are marked by Bmi1 and mTert. The goal of this study was to correlate the expression of these markers with indirect measures of ISC expansion during development, including quantification of crypt fission and side population (SP) sorting. Significant changes were observed in the percent of crypt fission and SP cells consistent with ISC expansion between postnatal day 14 and 21. Quantitative real-time polymerase chain reaction (RT-PCR) for the various ISC marker mRNAs demonstrated divergent patterns of expression. mTert surged earliest, during the first week of life as crypts are initially being formed, whereas Lgr5 and Bmi1 peaked on day 14. Olfm4 and Ascl2 had variable expression patterns. To assess the number and location of Lgr5-expressing cells during this period, histologic sections from intestines of Lgr5-EGFP mice were subjected to quantitative analysis. There was attenuated Lgr5-EGFP expression at birth and through the first week of life. Once crypts were formed, the overall number and percent of Lgr5-EGFP positive cells per crypt remain stable throughout development and into adulthood. These data were supported by Lgr5 in situ hybridization in wild-type mice. We conclude that heterogeneous populations of ISCs are expanding as measured by SP sorting and mRNA expression at distinct developmental time points

    Infants with esophageal atresia and right aortic arch: Characteristics and outcomes from the Midwest Pediatric Surgery Consortium

    Get PDF
    Purpose Right sided aortic arch (RAA) is a rare anatomic finding in infants with esophageal atresia with or without tracheoesophageal fistula (EA/TEF). In the presence of RAA, significant controversy exists regarding optimal side for thoracotomy in repair of the EA/TEF. The purpose of this study was to characterize the incidence, demographics, surgical approach, and outcomes of patients with RAA and EA/TEF. Methods A multi-institutional, IRB approved, retrospective cohort study of infants with EA/TEF treated at 11 children's hospitals in the United States over a 5-year period (2009 to 2014) was performed. All patients had a minimum of one-year follow-up. Results In a cohort of 396 infants with esophageal atresia, 20 (5%) had RAA, with 18 having EA with a distal TEF and 2 with pure EA. Compared to infants with left sided arch (LAA), RAA infants had a lower median birth weight, (1.96 kg (IQR 1.54–2.65) vs. 2.57 kg (2.00–3.03), p = 0.01), earlier gestational age (34.5 weeks (IQR 32–37) vs. 37 weeks (35–39), p = 0.01), and a higher incidence of congenital heart disease (90% vs. 32%, p  0.29). Conclusion RAA in infants with EA/TEF is rare with an incidence of 5%. Compared to infants with EA/TEF and LAA, infants with EA/TEF and RAA are more severely ill with lower birth weight and higher rates of prematurity and complex congenital heart disease. In neonates with RAA, surgical repair of the EA/TEF is technically feasible via thoracotomy from either chest. A higher incidence of anastomotic strictures may occur with a right-sided approach

    Effect of leptin on intestinal re-growth following massive small bowel resection in rat

    Full text link
    Recent evidence suggests that the adipose tissue-derived cytokine leptin (LEP) is involved in modulation of growth and differentiation of normal small intestine. The purpose of the present study was to evaluate the effects of parenteral LEP on structural intestinal adaptation, cell proliferation and apoptosis in a rat model of short bowel syndrome (SBS). Male Sprague-Dawley rats were divided into three experimental groups: Sham rats underwent bowel transection and re-anastomosis, SBS-rats underwent a 75% small bowel resection, and SBS-LEP-rats underwent bowel resection and were treated with LEP given subcutaneously at a dose of 20 μg/kg, once daily, from day 3 through 14. Parameters of intestinal adaptation (bowel and mucosal weights, mucosal DNA and protein, villus height and crypt depth in jejunum and ileum), enterocyte proliferation and enterocyte apoptosis were determined on day 15 following operation. Ileal tissue samples were taken for detection of bax and bcl-2 gene expression using RT-PCR technique. Statistical analysis was performed using the non-parametric Kruskal–Wallis ANOVA test, with P< 0.05 considered statistically significant. Treatment with subcutaneous LEP resulted in a significant increase in jejunal (17%, P< 0.05) and ileal (13%, P< 0.05) bowel weight, jejunal (10%, P< 0.05) and ileal (25%, P< 0.05) mucosal weight, jejunal (26%, P< 0.05) and ileal (38%, P< 0.05) mucosal DNA, ileal (25%, P< 0.05) mucosal protein, jejunal (41%, P< 0.05) and ileal (21%, P< 0.05) villus height, jejunal (37%, P< 0.05) crypt depth, and jejunal (24%, P< 0.05) and ileal (21%, P< 0.05) enterocyte proliferation compared to SBS-animals. Enterocyte apoptosis increased significantly after bowel resection in jejunum and ileum compared to sham animals and was accompanied by an increased bax gene expression and a decreased bcl-2 gene expression in ileal samples. SBS-LEP rats showed a trend toward a decrease in enterocyte apoptosis in ileum and a mild decrease in bax gene expression compared to SBS-untreated animals. In conclusion, in a rat model of SBS parenteral LEP stimulates structural intestinal adaptation. Increased cell proliferation and decreased cell death via apoptosis may be responsible for this increased cell mass.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47175/1/383_2005_Article_1572.pd

    Changing the Paradigm for Management of Pediatric Primary Spontaneous Pneumothorax: A Simple Aspiration Test Predicts Need for Operation

    Get PDF
    Purpose Chest tube (CT) management for pediatric primary spontaneous pneumothorax (PSP) is associated with long hospital stays and high recurrence rates. To streamline management, we explored simple aspiration as a test to predict need for surgery. Methods A multi-institution, prospective pilot study of patients with first presentation for PSP at 9 children’s hospitals was performed. Aspiration was performed through a pigtail catheter, followed by 6 h observation with CT clamped. If pneumothorax recurred during observation, the aspiration test failed and subsequent management was per surgeon discretion. Results Thirty-three patients were managed with simple aspiration. Aspiration was successful in 16 of 33 (48%), while 17 (52%) failed the aspiration test and required hospitalization. Twelve who failed aspiration underwent CT management, of which 10 (83%) failed CT management owing to either persistent air leak requiring VATS or subsequent PSP recurrence. Recurrence rate was significantly greater in the group that failed aspiration compared to the group that passed aspiration [10/12 (83%) vs 7/16 (44%), respectively, P = 0.028]. Conclusion Simple aspiration test upon presentation with PSP predicts chest tube failure with 83% positive predictive value. We recommend changing the PSP management algorithm to include an initial simple aspiration test, and if that fails, proceed directly to VATS

    Intestinal intraepithelial lymphocyte derived angiotensin converting enzyme modulates epithelial cell apoptosis

    Full text link
    Background & Aims : Intestinal adaptation in short bowel syndrome (SBS) consists of increased epithelial cell (EC) proliferation as well as apoptosis. Previous microarray analyses of intraepithelial lymphocytes (IEL) gene expression after SBS showed an increased expression of angiotensin converting enzyme (ACE). Because ACE has been shown to promote alveolar EC apoptosis, we examined if IEL-derived ACE plays a role in intestinal EC apoptosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44361/1/10495_2005_Article_2138.pd

    Sonic Hedgehog acts as a macrophage chemoattractant during regeneration of the gastric epithelium

    No full text
    Sonic Hedgehog (Shh), secreted from gastric parietal cells, contributes to the regeneration of the epithelium. The recruitment of macrophages plays a central role in the regenerative process. The mechanism that regulates macrophage recruitment in response to gastric injury is largely unknown. Here we tested the hypothesis that Shh stimulates macrophage chemotaxis to the injured epithelium and contributes to gastric regeneration. A mouse model expressing a myeloid cell-specific deletion of Smoothened (LysMcre/+;Smof/f) was generated using transgenic mice bearing loxP sites flanking the Smo gene (Smo loxP) and mice expressing a Cre recombinase transgene from the Lysozyme M locus (LysMCre). Acetic acid injury was induced in the stomachs of both control and LysMcre/+;Smof/f (SmoKO) mice and gastric epithelial regeneration and macrophage recruitment analyzed over a period of 7 days post-injury. Bone marrow-derived macrophages (BM-Mø) were collected from control and SmoKO mice. Human-derived gastric organoid/macrophage co-cultures were established, and macrophage chemotaxis measured. Compared to control mice, SmoKO animals exhibited inhibition of ulcer repair and normal epithelial regeneration, which correlated with decreased macrophage infiltration at the site of injury. Bone marrow chimera experiments using SmoKO donor cells showed that control chimera mice transplanted with SmoKO bone marrow donor cells exhibited a loss of ulcer repair, and transplantation of control bone marrow donor cells to SmoKO mice rescued epithelial cell regeneration. Histamine-stimulated Shh secretion in human organoid/macrophage co-cultures resulted in macrophage migration toward the gastric epithelium, a response that was blocked with Smo inhibitor Vismodegib. Shh-induced macrophage migration was mediated by AKT signaling. In conclusion, Shh signaling acts as a macrophage chemoattractant via a Smo-dependent mechanism during gastric epithelial regeneration in response to injury. © 2022, The Author(s).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    • …
    corecore