13 research outputs found

    Sign language detection using convolutional neural network for teaching and learning application

    Get PDF
    Teaching lower school mathematic could be easy for everyone. For teaching in the situation that cannot speak, using sign language is the answer especially someone that have infected with vocal cord infection or critical spasmodic dysphonia or maybe disable people. However, the situation could be difficult, when the sign language is not understandable by the audience. Thus, the purpose of this research is to design a sign language detection scheme for teaching and learning activity. In this research, the image of hand gestures from teacher or presenter will be taken by using a web camera for the system to anticipate and display the image's name. This proposed scheme will detects hand movements and convert it be meaningful information. As a result, it show the model can be the most consistent in term of accuracy and loss compared to others method. Furthermore, the proposed algorithm is expected to contribute the body of knowledge and the society

    Power management and control strategies for off-grid hybrid power systems with renewable energies and storage

    Get PDF
    This document is the Accepted Manuscript of the following article: Belkacem Belabbas, Tayeb Allaoui, Mohamed Tadjine, and Mouloud Denai, 'Power management and control strategies for off-grid hybrid power systems with renewable energies and storage', Energy Systems, September 2017. Under embargo. Embargo end date: 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s12667-017-0251-y.This paper presents a simulation study of standalone hybrid Distributed Generation Systems (DGS) with Battery Energy Storage System (BESS). The DGS consists of Photovoltaic (PV) panels as Renewable Power Source (RPS), a Diesel Generator (DG) for power buck-up and a BESS to accommodate the surplus of energy, which may be employed in times of poor PV generation. While off-grid DGS represent an efficient and cost-effective energy supply solution particularly to rural and remote areas, fluctuations in voltage and frequency due to load variations, weather conditions (temperature, irradiation) and transmission line short-circuits are major challenges. The paper suggests a hierarchical Power Management (PM) and controller structure to improve the reliability and efficiency of the hybrid DGS. The first layer of the overall control scheme includes a Fuzzy Logic Controller (FLC) to adjust the voltage and frequency at the Point of Common Coupling (PCC) and a Clamping Bridge Circuit (CBC) which regulates the DC bus voltage. A maximum power point tracking (MPPT) controller based on FLC is designed to extract the optimum power from the PV. The second control layer coordinates among PV, DG and BESS to ensure reliable and efficient power supply to the load. MATLAB Simulink is used to implement the overall model of the off-grid DGS and to test the performance of the proposed control scheme which is evaluated in a series of simulations scenarios. The results demonstrated the good performance of the proposed control scheme and effective coordination between the DGS for all the simulation scenarios considered.Peer reviewedFinal Accepted Versio

    Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract

    No full text
    Philippe Belle Ebanda Kedi,1,2 Francois Eya’ane Meva,3 Lebogang Kotsedi,2,4,5 Edwige Laure Nguemfo,6 Calvin Bogning Zangueu,1 Agnes Antoinette Ntoumba,1 Hamza Elsayed Ahmed Mohamed,2,4 Alain Bertrand Dongmo,1 Malik Maaza2,4 1Department of Animal Biology and Physiology, Faculty of Science, University of Douala, Douala, Cameroon; 2Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset, South Africa; 3Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon; 4UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa; 5Department of Physics, University of the Western Cape, Bellville, Cape Town, South Africa; 6Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon Introduction: There is emerging interest in medicinal plants in the biomedical field, due to their multitude of chemicals which show anti-inflammatory, antimicrobial, antiviral, or antitumoral potential. Research on medicinal plants has shown that nanotechnology could offer new solutions in the quality control, delivery aspects, or in sustaining herbal biological activities. This work reports on the preparation and characterization of silver nanoparticle-mediated Selaginella myosurus plant extract. Methods: Ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction, energy dispersive X-ray spectroscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and selected area electron diffraction have been used to characterize the prepared silver nanoparticles. The synthetic stability was studied by varying concentrations and pH of reactants. Egg albumin denaturation and carrageenan-induced rat paw edema model were used to ascertain the anti-inflammation. Results: Ultraviolet-visible spectroscopy gave plasmon resonance ranging between 420 and 480 nm while Fourier transform infrared spectroscopy proved nano interface functionalized with organics. The powder X-ray diffraction pattern is in agreement with silver and silver chloride nanoparticles of crystallite size 33.7 nm and 44.2 nm for silver and silver chloride, respectively. Energy dispersive X-ray spectroscopy enables elemental characterization of the particles consisting of silver and silver chloride among main elements. Spherical silver grain of 58.81 nm average size has been depicted with high-resolution scanning electron microscopy and high-resolution transmission electron microscopy. Inhibitions of 99% and 60% were obtained in vitro and in vivo, respectively. Conclusion: The albumin denaturation and carrageenan-induced rat hind paw edema model to assess the anti-inflammatory potential of generated nanoparticles suggests that the silver nanoparticles may act as reducing/inhibiting agents on the release of acute inflammatory mediators. Hence, this work clearly demonstrated that silver nanoparticles mediated-Selaginella myosurus could be considered as a potential source for anti-inflammatory drugs. Keywords: eco-friendly synthesis, silver nanoparticles, Selaginella myosurus, anti-inflammator
    corecore