4,757 research outputs found

    Nanoscale Conducting and Insulating Domains on YbB6_6

    Full text link
    YbB6_6 is a predicted topological insulator, with experimental evidence for conducting surface states of yet-unproven origin. However, its lack of a natural cleavage plane, and resultant surface-dependent polarity, has obscured its study. We use scanning tunneling microscopy to image the cleaved surface of YbB6_6, exhibiting several coexisting terminations with distinct atomic structures. Our spectroscopic measurements show band-bending between the terminations, resulting in both conducting and fully-gapped regions. In the conductive regions, we observe spectral peaks that are suggestive of van Hove singularities arising from Rashba spin-split quantum well states. The insulating regions rule out the possibility that YbB6_6 is a strong topological insulator, while the spin-polarized conducting regions suggest possible utility for spintronic devices.Comment: Submitted to Physical Review Letter

    A quantum phase transition from triangular to stripe charge order in NbSe2_{2}

    Full text link
    The competition between proximate electronic phases produces a complex phenomenology in strongly correlated systems. In particular, fluctuations associated with periodic charge or spin modulations, known as density waves, may lead to exotic superconductivity in several correlated materials. However, density waves have been difficult to isolate in the presence of chemical disorder, and the suspected causal link between competing density wave orders and high temperature superconductivity is not understood. Here we use scanning tunneling microscopy to image a previously unknown unidirectional (stripe) charge density wave (CDW) smoothly interfacing with the familiar tri-directional (triangular) CDW on the surface of the stoichiometric superconductor NbSe2_2. Our low temperature measurements rule out thermal fluctuations, and point to local strain as the tuning parameter for this quantum phase transition. We use this discovery to resolve two longstanding debates about the anomalous spectroscopic gap and the role of Fermi surface nesting in the CDW phase of NbSe2_2. Our results highlight the importance of local strain in governing phase transitions and competing phenomena, and suggest a new direction of inquiry for resolving similarly longstanding debates in cuprate superconductors and other strongly correlated materials.Comment: PNAS in pres

    Charge order driven by Fermi-arc instability in Bi2201

    Full text link
    The understanding of the origin of superconductivity in cuprates has been hindered by the apparent diversity of intertwining electronic orders in these materials. We combined resonant x-ray scattering (REXS), scanning-tunneling microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to observe a charge order that appears consistently in surface and bulk, and in momentum and real space within one cuprate family, Bi2201. The observed wave vectors rule out simple antinodal nesting in the single-particle limit but match well with a phenomenological model of a many-body instability of the Fermi arcs. Combined with earlier observations of electronic order in other cuprate families, these findings suggest the existence of a generic charge-ordered state in underdoped cuprates and uncover its intimate connection to the pseudogap regime.Comment: A high resolution version can be found at http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/Bi2201_CDW_REXS_STM.pdf

    Suppression of Superconductivity by Twin Boundaries in FeSe

    Get PDF
    Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate twin boundaries in stoichiometric FeSe films grown by molecular beam epitaxy. Twin boundaries can be unambiguously identified by imaging the 90{\deg} change in the orientation of local electronic dimers from Fe site impurities on either side. Twin boundaries run at approximately 45{\deg} to the Fe-Fe bond directions, and noticeably suppress the superconducting gap, in contrast with the recent experimental and theoretical findings in other iron pnictides. Furthermore, vortices appear to accumulate on twin boundaries, consistent with the degraded superconductivity there. The variation in superconductivity is likely caused by the increased Se height in the vicinity of twin boundaries, providing the first local evidence for the importance of this height to the mechanism of superconductivity.Comment: 6 pages, 7 figure

    Effect of Grain Size on the Irradiation Response of Grade 91 Steel Subjected to Fe Ion Irradiation at 300 °C

    Get PDF
    Irradiation using Fe ion at 300 °C up to 100 dpa was carried out on three variants of Grade 91 (G91) steel samples with different grain size ranges: fine-grained (FG, with blocky grains of a few micrometers long and a few hundred nanometers wide), ultrafine-grained (UFG, grain size of ~ 400 nm) and nanocrystalline (NC, lath grains of ~ 200 nm long and ~ 80 nm wide). Electron microscopy investigations indicate that NC G91 exhibit higher resistance to irradiation-induced defect formation than FG and UFG G91. In addition, nano-indentation studies reveal that irradiation-induced hardening is significantly lower in NC G91 than that in FG and UFG G91. Effective mitigation of irradiation damage was achieved in NC G91 steel in the current irradiation condition. Graphical abstract: [Figure not available: see full text.

    Nanoscale variation of the Rashba energy in BiTeI

    Full text link
    BiTeI is a polar semiconductor with strong spin-orbit coupling (SOC) that produces large Rashba spin splitting. Due to its potential utility in spintronics and magnetoelectrics, it is essential to understand how defects impact the spin transport in this material. Using scanning tunneling microscopy and spectroscopy, we image ring-like charging states of single-atom defects on the iodine surface of BiTeI. We observe nanoscale variations in the Rashba energy around each defect, which we correlate with the local electric field extracted from the bias dependence of each ring radius. Our data demonstrate the local impact of atomic defects on the Rashba effect, which is both a challenge and an opportunity for the development of future nanoscale spintronic devices
    • …
    corecore