8,702 research outputs found
Non-integrability of dominated splitting on
We construct a diffeomorphism on 2-torus with a dominated splitting such that there exists an open neighborhood
satisfying that for any , neither nor is
integrable
Hierarchically Structured Reinforcement Learning for Topically Coherent Visual Story Generation
We propose a hierarchically structured reinforcement learning approach to
address the challenges of planning for generating coherent multi-sentence
stories for the visual storytelling task. Within our framework, the task of
generating a story given a sequence of images is divided across a two-level
hierarchical decoder. The high-level decoder constructs a plan by generating a
semantic concept (i.e., topic) for each image in sequence. The low-level
decoder generates a sentence for each image using a semantic compositional
network, which effectively grounds the sentence generation conditioned on the
topic. The two decoders are jointly trained end-to-end using reinforcement
learning. We evaluate our model on the visual storytelling (VIST) dataset.
Empirical results from both automatic and human evaluations demonstrate that
the proposed hierarchically structured reinforced training achieves
significantly better performance compared to a strong flat deep reinforcement
learning baseline.Comment: Accepted to AAAI 201
AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
In this paper, we propose an Attentional Generative Adversarial Network
(AttnGAN) that allows attention-driven, multi-stage refinement for fine-grained
text-to-image generation. With a novel attentional generative network, the
AttnGAN can synthesize fine-grained details at different subregions of the
image by paying attentions to the relevant words in the natural language
description. In addition, a deep attentional multimodal similarity model is
proposed to compute a fine-grained image-text matching loss for training the
generator. The proposed AttnGAN significantly outperforms the previous state of
the art, boosting the best reported inception score by 14.14% on the CUB
dataset and 170.25% on the more challenging COCO dataset. A detailed analysis
is also performed by visualizing the attention layers of the AttnGAN. It for
the first time shows that the layered attentional GAN is able to automatically
select the condition at the word level for generating different parts of the
image
- …