73 research outputs found

    Regression analysis for peak designation in pulsatile pressure signals

    Get PDF
    Following recent studies, the automatic analysis of intracranial pressure (ICP) pulses appears to be a promising tool for forecasting critical intracranial and cerebrovascular pathophysiological variations during the management of many disorders. A pulse analysis framework has been recently developed to automatically extract morphological features of ICP pulses. The algorithm is able to enhance the quality of ICP signals, to segment ICP pulses, and to designate the locations of the three ICP sub-peaks in a pulse. This paper extends this algorithm by utilizing machine learning techniques to replace Gaussian priors used in the peak designation process with more versatile regression models. The experimental evaluations are conducted on a database of ICP signals built from 700 h of recordings from 64 neurosurgical patients. A comparative analysis of different state-of-the-art regression analysis methods is conducted and the best approach is then compared to the original pulse analysis algorithm. The results demonstrate a significant improvement in terms of accuracy in favor of our regression-based recognition framework. It reaches an average peak designation accuracy of 99% using a kernel spectral regression against 93% for the original algorithm

    Cardiac output in idiopathic normal pressure hydrocephalus: association with arterial blood pressure and intracranial pressure wave amplitudes and outcome of shunt surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with idiopathic normal pressure hydrocephalus (iNPH) responding to shunt surgery, we have consistently found elevated intracranial pressure (ICP) wave amplitudes during diagnostic ICP monitoring prior to surgery. It remains unknown why ICP wave amplitudes are increased in these patients. Since iNPH is accompanied by a high incidence of vascular co-morbidity, a possible explanation is that there is reduced vascular compliance accompanied by elevated arterial blood pressure (ABP) wave amplitudes and even altered cardiac output (CO). To investigate this possibility, the present study was undertaken to continuously monitor CO to determine if it is correlated to ABP and ICP wave amplitudes and the outcome of shunting in iNPH patients. It was specifically addressed whether the increased ICP wave amplitudes seen in iNPH shunt responders were accompanied by elevated CO and/or ABP wave amplitude levels.</p> <p>Methods</p> <p>Prospective iNPH patients (29) were clinically graded using an NPH grading scale. Continuous overnight minimally-invasive monitoring of CO and ABP was done simultaneously with ICP monitoring; the CO, ABP, and ICP parameters were parsed into 6-second time windows. Patients were assessed for shunt surgery on clinical grade, Evan's index, and ICP wave amplitude. Follow-up clinical grading was performed 12 months after surgery.</p> <p>Results</p> <p>ICP wave amplitudes but not CO or ABP wave amplitude, showed good correlation with the response to shunt treatment. The patients with high ICP wave amplitude did not have accompanying high levels of CO or ABP wave amplitude. Correlation analysis between CO and ICP wave amplitudes in individual patients showed different profiles [significantly positive in 10 (35%) and significantly negative in 16 (55%) of 29 recordings]. This depended on whether there was also a correlation between ABP and ICP wave amplitudes and on the average level of ICP wave amplitude.</p> <p>Conclusions</p> <p>These results gave no evidence that the increased levels of ICP wave amplitudes seen in iNPH shunt responders prior to surgery were accompanied by elevated levels of ABP wave amplitudes or elevated CO. In the individual patients the correlation between CO and ICP wave amplitude was partly related to an association between ABP and ICP wave amplitudes which can be indicative of the state of cerebrovascular pressure regulation, and partly related to the ICP wave amplitude which can be indicative of the intracranial compliance.</p

    Effect of resting pressure on the estimate of cerebrospinal fluid outflow conductance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A lumbar infusion test is commonly used as a predictive test for patients with normal pressure hydrocephalus and for evaluation of cerebrospinal fluid (CSF) shunt function. Different infusion protocols can be used to estimate the outflow conductance (<it>C</it><sub>out</sub>) or its reciprocal the outflow resistance (<it>R</it><sub>out</sub>), with or without using the baseline resting pressure, <it>P</it><sub>r</sub>. Both from a basic physiological research and a clinical perspective, it is important to understand the limitations of the model on which infusion tests are based. By estimating <it>C</it><sub>out</sub> using two different analyses, with or without <it>P</it><sub>r</sub>, the limitations could be explored. The aim of this study was to compare the <it>C</it><sub>out</sub> estimates, and investigate what effect <it>P</it><sub>r</sub>had on the results.</p> <p>Methods</p> <p>Sixty-three patients that underwent a constant pressure infusion protocol as part of their preoperative evaluation for normal pressure hydrocephalus, were included (age 70.3 ± 10.8 years (mean ± SD)). The analysis was performed without (<it>C</it><sub>excl Pr</sub>) and with (<it>C</it><sub>incl Pr</sub>) P<sub>r</sub>. The estimates were compared using Bland-Altman plots and paired sample <it>t</it>-tests (<it>p </it>< 0.05 considered significant).</p> <p>Results</p> <p>Mean <it>C</it><sub>out</sub> for the 63 patients was: <it>C</it><sub>excl Pr </sub>= 7.0 ± 4.0 (mean ± SD) μl/(s kPa) and <it>C</it><sub>incl Pr</sub> = 9.1 ± 4.3 μl/(s kPa) and <it>R</it><sub>out</sub> was 19.0 ± 9.2 and 17.7 ± 11.3 mmHg/ml/min, respectively. There was a positive correlation between methods (r = 0.79, n = 63, <it>p </it>< 0.01). The difference, Δ<it>C</it><sub>out</sub>= -2.1 ± 2.7 μl/(s kPa) between methods was significant (<it>p </it>< 0.01) and Δ<it>R</it><sub>out </sub>was 1.2 ± 8.8 mmHg/ml/min). The Bland-Altman plot visualized that the variation around the mean difference was similar all through the range of measured values and there was no correlation between Δ<it>C</it><sub>out </sub>and <it>C</it><sub>out</sub>.</p> <p>Conclusions</p> <p>The difference between <it>C</it><sub>out </sub>estimates, obtained from analyses with or without <it>P</it><sub>r</sub>, needs to be taken into consideration when comparing results from studies using different infusion test protocols. The study suggests variation in CSF formation rate, variation in venous pressure or a pressure dependent <it>C</it><sub>out </sub>as possible causes for the deviation from the CSF absorption model seen in some patients.</p

    Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD)

    Get PDF

    Anti-Siphon Device in Shunt Therapy

    No full text

    Electrocortical Activity in SAH

    No full text

    Anti-Siphon(?) Shunt Device

    No full text
    corecore