4 research outputs found

    Assessment of the uniformity and stability of grapevine cultivars using a set of microsatellite markers

    Get PDF
    Solidity of microsatellite markers is a key issue for varietal identification, especially when they are used for legal purposes, what includes their probable future use in the distinctness, uniformity and stability testing of new varieties needed for the granting of Plant Breeders' Rights. Nine grapevine microsatellites (VVS2, VVMD5, VVMD27, VVMD28, ssrVrZAG29, ssrVrZAG62, ssrVrZAG67, ssrVrZAG83 and ssrVrZAG112), which had previously demonstrated its capacity to discriminate any grapevine variety, have been assessed to evaluate its uniformity and stability. 19 varieties were selected, representative of a high diversity for morphological, agronomical, cultural and historical aspects, as well as for microsatellite allele variability. Then, for each variety, uniformity and stability were evaluated through the analysis of 50 plants from each of three different plots, and five plants from each of seven additional plots. Material from 4,137 plants of 229 plots of the 19 varieties was sampled in seven countries. Of 3,654 plants analyzed with the set of nine microsatellites, 3,299 were of the right variety and used for the survey. An average of 172 individual values was studied for each allele of each microsatellite of each variety, and none differences were detected that could not be explained as technical variations, with the exception of several putative chimeras in two varieties. Of the total of 171 variety x microsatellite combinations, only in one combination ('Merlot' x VVMD27) the number of off-types exceeded the threshold allowed. The remaining 170 combinations have been found uniform and stable according to internationally accepted rules. © 2012 Springer Science+Business Media B.V.This study was financially supported by the project VIN01-025 (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Agriculture Ministry of Spain).Peer Reviewe
    corecore