10 research outputs found

    Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation

    Get PDF
    In this work, we provide proof-of-concept of formation, physical characteristics and potential use as a drug delivery formulation of Pickering emulsions (PE) obtained by a novel method that combines nanoprecipitation with subsequent spontaneous emulsification process. To this end, pre-formed ultra-small (d.∌10 nm) nanoprecipitated nanoparticles of hydrophobic derivatives of cashew tree gum grafted with polylactide (CGPLAP), were conceived to stabilize Pickering emulsions obtained by spontaneous emulsification. These were also loaded with Amphotericin B (AmB), a drug of low oral bioavailability used in the therapy of neglected diseases such as leishmaniasis. The graft reaction was performed in two CG/PLA molar ratio conditions (1:1 and 1:10). Emulsions were prepared by adding the organic phase (Miglyol 812Âź) in the aqueous phase (nanoprecipitated CGPLAP), resulting the immediate emulsion formation. The isolation by centrifugation does not destabilize or separate the nanoparticles from oil droplets of the PE emulsion. Emulsions with CGPLAP 1:1 presented unimodal distributions at different CGPLA concentration, lower values in size and PDI and the best stability over time. The AmB was incorporated in the emulsions with a process efficiency of 21-47%, as determined by UV-vis. AmB in CGPLAP emulsions is in less aggregated state than observed in commercial AmB formulation

    Effect of Acyl Chain Length on Hydrophobized Cashew Gum Self-Assembling Nanoparticles: Colloidal Properties and Amphotericin B Delivery

    Get PDF
    Given its many potential applications, cashew gum hydrophobic derivatives have gained increasing attraction in recent years. We report here the effect of acyl chain length on hydrophobized cashew gum derivatives, using acetic, propionic, and butyric anhydrides on self-assembly nanoparticle properties and amphotericin B delivery. Nanoparticles with unimodal particle size distribution, highly negative zeta potential, and low PDI were produced. Butyrate cashew gum nanoparticles presented smaller size (<~100 nm) than acetylated and propionate cashew gum nanoparticles and no cytotoxicity in murine fibroblast cells was observed up to 100 ”g/mL for loaded and unloaded nanoparticles. As a proof of concept of the potential use of the developed nanoparticle as a drug carrier formulation, amphotericin B (AmB) was encapsulated and fully characterized in their physicochemical, AmB association and release, stability, and biological aspects. They exhibited average hydrodynamic diameter lower than ~200 nm, high AmB efficiency encapsulations (up to 94.9%), and controlled release. A decrease in AmB release with the increasing of the anhydride chain length was observed, which explains the differences in antifungal activity against Candida albicans strains. An excellent storage colloidal stability was observed for unloaded and loaded AmB without use of surfactant. Considering the AmB delivery, the acyl derivative with low chain length is shown to be the best one, as it has high drug loading and AmB release, as well as low minimum inhibitory concentration against Candida albicans strains

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Self-assembling cashew gum-graft-polylactide copolymer nanoparticles as a potential amphotericin B delivery matrix

    Get PDF
    Amphotericin B is an antibiotic used in the treatment of fungal disease and leishmania; however, it exhibits side effects to patients, hindering its wider application. Therefore, nanocarriers have been investigated as delivery systems for amphotericin B (AMB) in order to decrease its toxicity, besides increase bioavailability and solubility. Amphiphilic copolymers are interesting materials to encapsulate hydrophobic drugs such as AMB, hence copolymers of cashew gum (CG) and l-lactide (LA) were synthesized using two different CG:LA molar ratios (1:1 and 1:10). Data obtained revealed that copolymer nanoparticles present similar figures for particle sizes and zeta potentials; however, particle size of encapsulated AMB increases if compared to unloaded nanoparticles. The 1:10 nanoparticle sample has better stability although higher polydispersity index (PDI) if compared to 1:1 sample. High amphotericin (AMB) encapsulation efficiencies and low hemolysis were obtained. AMB loaded copolymers show lower aggregation pattern than commercial AMB solution. AMB loaded nanoparticles show antifungal activities against four C. albicans strains. It can be inferred that cashew gum/polylactide copolymers have potential as nanocarrier systems for AMB

    Development of amphotericin B-loaded propionate Sterculia striata polysaccharide nanocarrier

    No full text
    This work was aimed at the production and characterization of a new nanocarrier based on a Sterculia striata polysaccharide (SSP) modified via acylation reaction with propionic anhydride. Nanocapsules of propionated SSP (PSSP) were produced via spontaneous nanoemulsification process and tested as a potential amphotericin B (AMB) nanocarrier. Stable nanoparticles with a very low polydispersity index (0.08–0.29) and high zeta potential (ζ −42.7 to −53.8 mV) were obtained. Particle size was dependent on the degree of substitution and ranged from 205 to 286 nm. A nanocapsule with a degree of substitution (DS) of 2.53 (NCP 2.53) was selected for encapsulation, biocompatibility, and antifungal evaluation against Candida albicans strains. A maximum of 98.3% AMB encapsulation was achieved. Encapsulated AMB was in its monomeric form and showed good biocompatibility and antifungal activity against four C. albicans strains. Data indicate that PSSP has potential as a nanocarrier system for AMB

    Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks

    No full text
    International audienceOils are used in agriculture, nutrition, food and cosmetics; however, these substances are oxidisable and may readily lose their properties. To reduce their degradation or to mask certain undesirable aspects, one strategy consists in encapsulating the oil in inert structures (capsules). The capsules are classified according to the morphology, the number of cores and size, can be produced by several techniques: jet-cutting, vibrating jet, spray-drying, dispersion and milli-microfluidic. Among the polymers used as a membrane in the capsules, alginates are used in oil encapsulation because of their high gelling capacity, biocompatibility and low toxicity. In the presence of calcium ions, the alginate macromolecules crosslink to form a three-dimensional network called hydrogel. The oil encapsulation using alginate as encapsulating material can be carried out using technologies based on the external, internal or inverse gelation mechanisms. These capsules can found applications in areas as cosmetics, textile, foods and veterinary, for example

    Effect of Oppositely Charged Polymer and Dissolution Media on Rheology of Spray-Dried Ionic Complexes

    No full text
    The purpose of this research was to address the utility of rheological study in understanding the influence of oppositely charged polymers on release of naproxen sodium encapsulated in chitosan particles. The interaction between oppositely charged Îș-carrageenan (Îș-Ca) and chitosan leads to relatively higher gel strength, which is proportional to the ability to retard the drug release at acidic pH. The oscillatory tests within the linear viscoelastic range where the stress is proportional to the applied strain were performed on the hydrated sample matrices containing chitosan-naproxen sodium spray-dried complexes and k-Ca or hydroxypropyl methylcellulose (HPMC) in various ratios. It was observed that the effect of pH change on the dynamic moduli in spray-dried complexes containing Îș-Ca was much stronger than that with HPMC reflecting presence of strong ionic interaction between Îș-Ca and chitosan. The combination of oppositely charged polymers in different ratios proved to be useful in modulating the rheological properties of the hydrated formulations and their release-retarding properties. Dynamic moduli can be used to measure gel strength and are significant for the interpretation of oral sustained release spray-dried complexes

    Polysaccharides as safer release systems for agrochemicals

    No full text
    corecore