27 research outputs found

    Absolute risk representation in cardiovascular disease prevention: comprehension and preferences of health care consumers and general practitioners involved in a focus group study

    Get PDF
    Background Communicating risk is part of primary prevention of coronary heart disease and stroke, collectively referred to as cardiovascular disease (CVD). In Australia, health organisations have promoted an absolute risk approach, thereby raising the question of suitable standardised formats for risk communication. Methods Sixteen formats of risk representation were prepared including statements, icons, graphical formats, alone or in combination, and with variable use of colours. All presented the same risk, i.e., the absolute risk for a 55 year old woman, 16% risk of CVD in five years. Preferences for a five or ten-year timeframe were explored. Australian GPs and consumers were recruited for participation in focus groups, with the data analysed thematically and preferred formats tallied. Results Three focus groups with health consumers and three with GPs were held, involving 19 consumers and 18 GPs. Consumers and GPs had similar views on which formats were more easily comprehended and which conveyed 16% risk as a high risk. A simple summation of preferences resulted in three graphical formats (thermometers, vertical bar chart) and one statement format as the top choices. The use of colour to distinguish risk (red, yellow, green) and comparative information (age, sex, smoking status) were important ingredients. Consumers found formats which combined information helpful, such as colour, effect of changing behaviour on risk, or comparison with a healthy older person. GPs preferred formats that helped them relate the information about risk of CVD to their patients, and could be used to motivate patients to change behaviour. Several formats were reported as confusing, such as a percentage risk with no contextual information, line graphs, and icons, particularly those with larger numbers. Whilst consumers and GPs shared preferences, the use of one format for all situations was not recommended. Overall, people across groups felt that risk expressed over five years was preferable to a ten-year risk, the latter being too remote. Conclusions Consumers and GPs shared preferences for risk representation formats. Both groups liked the option to combine formats and tailor the risk information to reflect a specific individual's risk, to maximise understanding and provide a good basis for discussion

    Surface Modification and Planar Defects of Calcium Carbonates by Magnetic Water Treatment

    Get PDF
    Powdery calcium carbonates, predominantly calcite and aragonite, with planar defects and cation–anion mixed surfaces as deposited on low-carbon steel by magnetic water treatment (MWT) were characterized by X-ray diffraction, electron microscopy, and vibration spectroscopy. Calcite were found to form faceted nanoparticles having 3x () commensurate superstructure and with well-developed {} and {} surfaces to exhibit preferred orientations. Aragonite occurred as laths having 3x () commensurate superstructure and with well-developed () surface extending along [100] direction up to micrometers in length. The (hkil)-specific coalescence of calcite and rapid lath growth of aragonite under the combined effects of Lorentz force and a precondensation event account for a beneficial larger particulate/colony size for the removal of the carbonate scale from the steel substrate. The coexisting magnetite particles have well-developed {011} surfaces regardless of MWT

    Periodic density functional theory calculations of bulk and the (010) surface of goethite

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Goethite is a common and reactive mineral in the environment. The transport of contaminants and anaerobic respiration of microbes are significantly affected by adsorption and reduction reactions involving goethite. An understanding of the mineral-water interface of goethite is critical for determining the molecular-scale mechanisms of adsorption and reduction reactions. In this study, periodic density functional theory (DFT) calculations were performed on the mineral goethite and its (010) surface, using the Vienna <it>Ab Initio </it>Simulation Package (VASP).</p> <p>Results</p> <p>Calculations of the bulk mineral structure accurately reproduced the observed crystal structure and vibrational frequencies, suggesting that this computational methodology was suitable for modeling the goethite-water interface. Energy-minimized structures of bare, hydrated (one H<sub>2</sub>O layer) and solvated (three H<sub>2</sub>O layers) (010) surfaces were calculated for 1 × 1 and 3 × 3 unit cell slabs. A good correlation between the calculated and observed vibrational frequencies was found for the 1 × 1 solvated surface. However, differences between the 1 × 1 and 3 × 3 slab calculations indicated that larger models may be necessary to simulate the relaxation of water at the interface. Comparison of two hydrated surfaces with molecularly and dissociatively adsorbed H<sub>2</sub>O showed a significantly lower potential energy for the former.</p> <p>Conclusion</p> <p>Surface Fe-O and (Fe)O-H bond lengths are reported that may be useful in surface complexation models (SCM) of the goethite (010) surface. These bond lengths were found to change significantly as a function of solvation (i.e., addition of two extra H<sub>2</sub>O layers above the surface), indicating that this parameter should be carefully considered in future SCM studies of metal oxide-water interfaces.</p

    The search for the ideal biocatalyst

    Get PDF
    While the use of enzymes as biocatalysts to assist in the industrial manufacture of fine chemicals and pharmaceuticals has enormous potential, application is frequently limited by evolution-led catalyst traits. The advent of designer biocatalysts, produced by informed selection and mutation through recombinant DNA technology, enables production of process-compatible enzymes. However, to fully realize the potential of designer enzymes in industrial applications, it will be necessary to tailor catalyst properties so that they are optimal not only for a given reaction but also in the context of the industrial process in which the enzyme is applied
    corecore