5 research outputs found

    Brief Report: Sensorimotor Gating in Idiopathic Autism and Autism Associated with Fragile X Syndrome

    Get PDF
    Prepulse inhibition (PPI) may useful for exploring the proposed shared neurobiology between idiopathic autism and autism caused by FXS. We compared PPI in four groups: typically developing controls (n = 18), FXS and autism (FXS+A; n = 15), FXS without autism spectrum disorder (FXS−A; n = 17), and idiopathic autism (IA; n = 15). Relative to controls, the FXS+A (p < 0.002) and FXS−A (p < 0.003) groups had impaired PPI. The FXS+A (p < 0.01) and FXS−A (p < 0.03) groups had lower PPI than the IA group. Prolonged startle latency was seen in the IA group. The differing PPI profiles seen in the FXS+A and IA indicates these groups may not share a common neurobiological abnormality of sensorimotor gating

    Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with fragile X syndrome and autism

    Get PDF
    To examine brain volumes in substructures associated with the behavioral features of children with FXS compared to children with idiopathic autism and controls. A cross-sectional study of brain substructures was conducted at the first time-point as part of an ongoing longitudinal MRI study of brain development in FXS. The study included 52 boys between 18–42 months of age with FXS and 118 comparison children (boys with autism-non FXS, developmental-delay, and typical development). Children with FXS and autistic disorder had substantially enlarged caudate volume and smaller amygdala volume; whereas those children with autistic disorder without FXS (i.e., idiopathic autism) had only modest enlargement in their caudate nucleus volumes but more robust enlargement of their amygdala volumes. Although we observed this double dissociation among selected brain volumes, no significant differences in severity of autistic behavior between these groups were observed. This study offers a unique examination of early brain development in two disorders, FXS and idiopathic autism, with overlapping behavioral features, but two distinct patterns of brain morphology. We observed that despite almost a third of our FXS sample meeting criteria for autism, the profile of brain volume differences for children with FXS and autism differed from those with idiopathic autism. These findings underscore the importance of addressing heterogeneity in studies of autistic behavior

    Early brain development in infants at high risk for autism spectrum disorder

    No full text
    Brain enlargement has been observed in children with Autism Spectrum Disorder (ASD), but the timing of this phenomenon and its relationship to the appearance of behavioral symptoms is unknown. Retrospective head circumference and longitudinal brain volume studies of 2 year olds followed up at age 4 years, have provided evidence that increased brain volume may emerge early in development.(1, 2) Studies of infants at high familial risk for autism can provide insight into the early development of autism and have found that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life(3,4). These observations suggest that prospective brain imaging studies of infants at high familial risk for ASD might identify early post-natal changes in brain volume occurring before the emergence of an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that cortical surface area hyper-expansion between 6-12 months of age precedes brain volume overgrowth observed between 12-24 months in the 15 high-risk infants diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep learning algorithm primarily using surface area information from brain MRI at 6 and 12 months of age predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81%, sensitivity of 88%). These findings demonstrate that early brain changes unfold during the period in which autistic behaviors are first emerging

    The Analysis of Animal Communication

    No full text
    corecore