242 research outputs found

    Databases in the Asia-Pacific Region: The Potential for a Distributed Network Approach

    Get PDF
    Background: This study describes the availability and characteristics of databases in Asian-Pacific countries and assesses the feasibility of a distributed network approach in the region. Methods: A web-based survey was conducted among investigators using healthcare databases in the Asia-Pacific countries. Potential survey participants were identified through the Asian Pharmacoepidemiology Network. Results: Investigators from a total of 11 databases participated in the survey. Database sources included four nationwide claims databases from Japan, South Korea, and Taiwan; two nationwide electronic health records from Hong Kong and Singapore; a regional electronic health record from western China; two electronic health records from Thailand; and cancer and stroke registries from Taiwan. Conclusions: We identified 11 databases with capabilities for distributed network approaches. Many country-specific coding systems and terminologies have been already converted to international coding systems. The harmonization of health expenditure data is a major obstacle for future investigations attempting to evaluate issues related to medical costs.postprin

    Biological impact of geometric uncertainties: what margin is needed for intra-hepatic tumors?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate and compare the biological impact on different proposed margin recipes for the same geometric uncertainties for intra-hepatic tumors with different tumor cell types or clinical stages.</p> <p>Method</p> <p>Three different margin recipes based on tumor motion were applied to sixteen IMRT plans with a total of twenty two intra-hepatic tumors. One recipe used the full amplitude of motion measured from patients to generate margins. A second used 70% of the full amplitude of motion, while the third had no margin for motion. The biological effects of geometric uncertainty in these three situations were evaluated with Equivalent Uniform Doses (EUD) for various survival fractions at 2 Gy (SF<sub>2</sub>).</p> <p>Results</p> <p>There was no significant difference in the biological impact between the full motion margin and the 70% motion margin. Also, there was no significant difference between different tumor cell types. When the margin for motion was eliminated, the difference of the biological impact was significant among different cell types due to geometric uncertainties. Elimination of the motion margin requires dose escalation to compensate for the biological dose reduction due to the geometric misses during treatment.</p> <p>Conclusions</p> <p>Both patient-based margins of full motion and of 70% motion are sufficient to prevent serious dosimetric error. Clinical implementation of margin reduction should consider the tumor sensitivity to radiation.</p

    Spatial and Spectral Coherent Control with Frequency Combs

    Full text link
    Quantum coherent control (1-3) is a powerful tool for steering the outcome of quantum processes towards a desired final state, by accurate manipulation of quantum interference between multiple pathways. Although coherent control techniques have found applications in many fields of science (4-9), the possibilities for spatial and high-resolution frequency control have remained limited. Here, we show that the use of counter-propagating broadband pulses enables the generation of fully controlled spatial excitation patterns. This spatial control approach also provides decoherence reduction, which allows the use of the high frequency resolution of an optical frequency comb (10,11). We exploit the counter-propagating geometry to perform spatially selective excitation of individual species in a multi-component gas mixture, as well as frequency determination of hyperfine constants of atomic rubidium with unprecedented accuracy. The combination of spectral and spatial coherent control adds a new dimension to coherent control with applications in e.g nonlinear spectroscopy, microscopy and high-precision frequency metrology.Comment: 12 page

    Dementia in Swedish Twins: Predicting Incident Cases

    Get PDF
    Thirty same-sex twin pairs were identified in which both members were assessed at baseline and one twin subsequently developed dementia, at least 3 years subsequent to the baseline measurement, while the partner remained cognitively intact for at least three additional years. Eighteen of the 30 cases were diagnosed with Alzheimer’s disease. Baseline assessments, conducted when twins’ average age was 70.6 (SD = 6.8), included a mailed questionnaire and in-person testing. Which twin would develop dementia was predicted by less favorable lipid values (higher apoB, ratio of apoB to apoA1, and total cholesterol), poorer grip strength, and—to a lesser extent—higher emotionality on the EAS Temperament Scale. Given the long preclinical period that characterizes Alzheimer’s disease, these findings may suggest late life risk factors for dementia, or may reflect changes that are part of preclinical disease

    Molecular Effects of Doxycycline Treatment on Pterygium as Revealed by Massive Transcriptome Sequencing

    Get PDF
    Pterygium is a lesion of the eye surface which involves cell proliferation, migration, angiogenesis, fibrosis, and extracellular matrix remodelling. Surgery is the only approved method to treat this disorder, but high recurrence rates are common. Recently, it has been shown in a mouse model that treatment with doxycycline resulted in reduction of the pterygium lesions. Here we study the mechanism(s) of action by which doxycycline achieves these results, using massive sequencing techniques. Surgically removed pterygia from 10 consecutive patients were set in short term culture and exposed to 0 (control), 50, 200, and 500 µg/ml doxycycline for 24 h, their mRNA was purified, reverse transcribed and sequenced through Illumina’s massive sequencing protocols. Acquired data were subjected to quantile normalization and analyzed using cytoscape plugin software to explore the pathways involved. False discovery rate (FDR) methods were used to identify 332 genes which modified their expression in a dose-dependent manner upon exposure to doxycycline. The more represented cellular pathways included all mitochondrial genes, the endoplasmic reticulum stress response, integrins and extracellular matrix components, and growth factors. A high correlation was obtained when comparing ultrasequencing data with qRT-PCR and ELISA results

    High Degree of Heterogeneity in Alzheimer's Disease Progression Patterns

    Get PDF
    There have been several reports on the varying rates of progression among Alzheimer's Disease (AD) patients; however, there has been no quantitative study of the amount of heterogeneity in AD. Obtaining a reliable quantitative measure of AD progression rates and their variances among the patients for each stage of AD is essential for evaluating results of any clinical study. The Global Deterioration Scale (GDS) and Functional Assessment Staging procedure (FAST) characterize seven stages in the course of AD from normal aging to severe dementia. Each GDS/FAST stage has a published mean duration, but the variance is unknown. We use statistical analysis to reconstruct GDS/FAST stage durations in a cohort of 648 AD patients with an average follow-up time of 4.78 years. Calculations for GDS/FAST stages 4–6 reveal that the standard deviations for stage durations are comparable with their mean values, indicating the presence of large variations in the AD progression among patients. Such amount of heterogeneity in the course of progression of AD is consistent with the existence of several sub-groups of AD patients, which differ by their patterns of decline

    Location of pathogenic variants in PSEN1 impacts progression of cognitive, clinical, and neurodegenerative measures in autosomal-dominant Alzheimer's disease

    Get PDF
    Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated Aβ compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by γ-secretase and the generation of toxic β-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials
    corecore