45 research outputs found

    Plasmodium vivax Adherence to Placental Glycosaminoglycans

    Get PDF
    BACKGROUND: Plasmodium vivax infections seldom kill directly but do cause indirect mortality by reducing birth weight and causing abortion. Cytoadherence and sequestration in the microvasculature are central to the pathogenesis of severe Plasmodium falciparum malaria, but the contribution of cytoadherence to pathology in other human malarias is less clear. METHODOLOGY: The adherence properties of P. vivax infected red blood cells (PvIRBC) were evaluated under static and flow conditions. PRINCIPAL FINDINGS: P. vivax isolates from 33 patients were studied. None adhered to immobilized CD36, ICAM-1, or thrombospondin, putative ligands for P. falciparum vascular cytoadherence, or umbilical vein endothelial cells, but all adhered to immobilized chondroitin sulphate A (CSA) and hyaluronic acid (HA), the receptors for adhesion of P. falciparum in the placenta. PvIRBC also adhered to fresh placental cells (N = 5). Pre-incubation with chondroitinase prevented PvIRBC adherence to CSA, and reduced binding to HA, whereas preincubation with hyaluronidase prevented adherence to HA, but did not reduce binding to CSA significantly. Pre-incubation of PvIRBC with soluble CSA and HA reduced binding to the immobilized receptors and prevented placental binding. PvIRBC adhesion was prevented by pre-incubation with trypsin, inhibited by heparin, and reduced by EGTA. Under laminar flow conditions the mean (SD) shear stress reducing maximum attachment by 50% was 0.06 (0.02) Pa but, having adhered, the PvIRBC could then resist detachment by stresses up to 5 Pa. At 37 °C adherence began approximately 16 hours after red cell invasion with maximal adherence at 30 hours. At 39 °C adherence began earlier and peaked at 24 hours. SIGNIFICANCE: Adherence of P. vivax-infected erythrocytes to glycosaminoglycans may contribute to the pathogenesis of vivax malaria and lead to intrauterine growth retardation

    Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration

    Get PDF
    Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease

    Toward precision medicine of breast cancer

    Full text link

    Human Lymphocyte-High Endothelial Venule Interaction: Functional and Molecular Characterization

    No full text
    corecore