1,791 research outputs found

    Image denoising based on nonlocal Bayesian singular value thresholding and Stein's unbiased risk estimator

    Full text link
    © 1992-2012 IEEE. Singular value thresholding (SVT)- or nuclear norm minimization (NNM)-based nonlocal image denoising methods often rely on the precise estimation of the noise variance. However, most existing methods either assume that the noise variance is known or require an extra step to estimate it. Under the iterative regularization framework, the error in the noise variance estimate propagates and accumulates with each iteration, ultimately degrading the overall denoising performance. In addition, the essence of these methods is still least squares estimation, which can cause a very high mean-squared error (MSE) and is inadequate for handling missing data or outliers. In order to address these deficiencies, we present a hybrid denoising model based on variational Bayesian inference and Stein's unbiased risk estimator (SURE), which consists of two complementary steps. In the first step, the variational Bayesian SVT performs a low-rank approximation of the nonlocal image patch matrix to simultaneously remove the noise and estimate the noise variance. In the second step, we modify the conventional SURE full-rank SVT and its divergence formulas for rank-reduced eigen-triplets to remove the residual artifacts. The proposed hybrid BSSVT method achieves better performance in recovering the true image compared with state-of-the-art methods

    Recent progress in organic-based radiative cooling materials: fabrication methods and thermal management properties

    Get PDF
    Organic-based materials capable of radiative cooling have attracted widespread interest in recent years due to their ease of engineering and good adaptability to different application scenarios. As a cooling material for walls, clothing, and electronic devices, these materials can reduce the energy consumption load of air conditioning, improve thermal comfort, and reduce carbon emissions. In this paper, an overview is given of the current fabrication strategies of organic-based radiative cooling materials, and of their properties. The methods and joint thermal management strategies including evaporative cooling, phase-change materials, fluorescence, and light-absorbing materials that have been demonstrated in conjunction with a radiative cooling function are also discussed. This review provides a comprehensive overview of organic-based radiative cooling, exemplifying the emerging application directions in this field and highlighting promising future research directions in the field

    Designer SiO2 Metasurfaces for Efficient Passive Radiative Cooling

    Get PDF
    In recent years, an increasing number of passive radiative cooling materials are proposed in the literature, with several examples relying on the use of silica (SiO2) due to its unique stability, non-toxicity, and availability. Nonetheless, due to its bulk phonon-polariton band, SiO2 presents a marked reflection peak within the atmospheric transparency window (8-13 mu m), leading to an emissivity decrease that poses a challenge to fulfilling the criteria for sub-ambient passive radiative cooling. Thus, the latest developments in this field are devoted to the design of engineered SiO2 photonic structures, to increase the cooling potential of bulk SiO2 radiative coolers. This review seeks to identify the most effective photonic design and fabrication strategies for SiO2 radiative emitters by evaluating their cooling efficacy, as well as their scalability, providing an in-depth analysis of the fundamental principles, structural models, and results (both numerical and experimental) of various types of SiO2 radiative coolers

    Epidemiological characteristics of sporadic nosocomial COVID-19 infections from June 2020 to June 2021 in China: an overview of vaccine breakthrough infection events

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has wreaked havoc to human beings around the world. Although China quickly brought the Coronavirus disease (COVID-19) pandemic under control, there have been several sporadic outbreaks in different regions of China since then. This article describes the chronological nosocomial COVID-19 infection events that related to several sporadic outbreaks of SARS-CoV-2 in different regions of China. We reported epidemiological characteristics and management measures of sporadic nosocomial COVID-19 infections from June 2020 to June 2021 in China, specially focused on domestic COVID-19 breakthrough infection in China — a vaccinated healthcare professional working in the isolation ward of a designated COVID-19 hospital
    • …
    corecore