22 research outputs found

    Reversing Coffee-Ring Effect by Laser-Induced Differential Evaporation

    Get PDF
    Abstract The coffee-ring effect, ubiquitously present in the drying process of aqueous droplets, impedes the performance of a myriad of applications involving precipitation of particle suspensions in evaporating liquids on solid surfaces, such as liquid biopsy combinational analysis, microarray fabrication, and ink-jet printing, to name a few. We invented the methodology of laser-induced differential evaporation to remove the coffee-ring effect. Without any additives to the liquid or any morphology modifications of the solid surface the liquid rests on, we have eliminated the coffee-ring effect by engineering the liquid evaporation profile with a CO2 laser irradiating the apex of the droplets. The method of laser-induced differential evaporation transitions particle deposition patterns from coffee-ring patterns to central-peak patterns, bringing all particles (e.g. fluorescent double strand DNAs) in the droplet to a designated area of 100 μm diameter without leaving any stains outside. The technique also moves the drying process from the constant contact radius (CCR) mode to the constant contact angle (CCA) mode. Physical mechanisms of this method were experimentally studied by internal flow tracking and surface evaporation flux mapping, and theoretically investigated by development of an analytical model

    How wall properties control diffusion in grooved nanochannels: a molecular dynamics study

    No full text
    The effect of a geometrically-rough wall, amplified by its degree of wettability and stiffness on diffusion coefficient in cases of fluid flow in nanochannels is studied by non-equilibrium molecular dynamics. Diffusion coefficient values, either inside the grooves or as average channel values are affected by the rough wall characteristics. A significant anisotropy along the directions parallel and normal to the flow is observed inside the grooves, while a critical value of groove length below which this anisotropy is enhanced exists. Wall wettability is the property that affects diffusion the most and could be a means of controlling its behavior

    Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers

    No full text
    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5–100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed
    corecore