22 research outputs found

    Reversing Coffee-Ring Effect by Laser-Induced Differential Evaporation

    Get PDF
    Abstract The coffee-ring effect, ubiquitously present in the drying process of aqueous droplets, impedes the performance of a myriad of applications involving precipitation of particle suspensions in evaporating liquids on solid surfaces, such as liquid biopsy combinational analysis, microarray fabrication, and ink-jet printing, to name a few. We invented the methodology of laser-induced differential evaporation to remove the coffee-ring effect. Without any additives to the liquid or any morphology modifications of the solid surface the liquid rests on, we have eliminated the coffee-ring effect by engineering the liquid evaporation profile with a CO2 laser irradiating the apex of the droplets. The method of laser-induced differential evaporation transitions particle deposition patterns from coffee-ring patterns to central-peak patterns, bringing all particles (e.g. fluorescent double strand DNAs) in the droplet to a designated area of 100 μm diameter without leaving any stains outside. The technique also moves the drying process from the constant contact radius (CCR) mode to the constant contact angle (CCA) mode. Physical mechanisms of this method were experimentally studied by internal flow tracking and surface evaporation flux mapping, and theoretically investigated by development of an analytical model

    How wall properties control diffusion in grooved nanochannels: a molecular dynamics study

    No full text
    The effect of a geometrically-rough wall, amplified by its degree of wettability and stiffness on diffusion coefficient in cases of fluid flow in nanochannels is studied by non-equilibrium molecular dynamics. Diffusion coefficient values, either inside the grooves or as average channel values are affected by the rough wall characteristics. A significant anisotropy along the directions parallel and normal to the flow is observed inside the grooves, while a critical value of groove length below which this anisotropy is enhanced exists. Wall wettability is the property that affects diffusion the most and could be a means of controlling its behavior
    corecore