21,004 research outputs found

    The Mixed State of Charge-Density-Wave in a Ring-Shaped Single Crystals

    Full text link
    Charge-density-wave (CDW) phase transition in a ring-shaped crystals, recently synthesized by Tanda et al. [Nature, 417, 397 (2002)], is studied based on a mean-field-approximation of Ginzburg-Landau free energy. It is shown that in a ring-shaped crystals CDW undergoes frustration due to the curvature (bending) of the ring (geometrical frustration) and, thus, forms a mixed state analogous to what a type-II superconductor forms under a magnetic field. We discuss the nature of the phase transition in the ring-CDW in relation to recent experiments.Comment: 6 pages, 4 figure

    Noisy quantum Monty Hall game

    Full text link
    The influence of spontaneous emission channel and generalized Pauli channel on quantum Monty Hall Game is analysed. The scheme of Flittney and Abbott is reformulated using the formalism of density matrices. Optimal classical strategies for given quantum strategies are found. The whole presented scheme illustrates how quantum noise may change the odds of a zero-sum game.Comment: 10 pages, 3 figure

    Asymptotic estimation theory for a finite dimensional pure state model

    Get PDF
    The optimization of measurement for n samples of pure sates are studied. The error of the optimal measurement for n samples is asymptotically compared with the one of the maximum likelihood estimators from n data given by the optimal measurement for one sample.Comment: LaTeX, 23 pages, Doctoral Thesi

    Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation

    Get PDF
    We discuss two quantum analogues of Fisher information, symmetric logarithmic derivative (SLD) Fisher information and Kubo-Mori-Bogoljubov (KMB) Fisher information from a large deviation viewpoint of quantum estimation and prove that the former gives the true bound and the latter gives the bound of consistent superefficient estimators. In another comparison, it is shown that the difference between them is characterized by the change of the order of limits.Comment: LaTeX with iopart.cls, iopart12.clo, iopams.st

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs -- Space-weather HMI Active Region Patches

    Full text link
    A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at http://jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.Comment: 27 pages, 7 figures. Accepted to Solar Physic

    Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation

    Full text link
    In a unified viewpoint in quantum channel estimation, we compare the Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramer-Rao bound in the phase estimation case while the both bounds coincide when the minimum mean square error decreases with the order O(1/n). We also derive a sufficient condition for that the minimum mean square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie

    Statistical analysis on testing of an entangled state based on Poisson distribution framework

    Get PDF
    A hypothesis testing scheme for entanglement has been formulated based on the Poisson distribution framework instead of the POVM framework. Three designs were proposed to test the entangled states in this framework. The designs were evaluated in terms of the asymptotic variance. It has been shown that the optimal time allocation between the coincidence and anti-coincidence measurement bases improves the conventional testing method. The test can be further improved by optimizing the time allocation between the anti-coincidence bases.Comment: This paper is an extended version of the theoretical part of v1 of quant-ph/0603254.quant-ph/0603254 is revised so that it is more familiar to experimentalist

    Poincar\'{e} gauge theory of gravity

    Full text link
    A Poincar\'{e} gauge theory of (2+1)-dimensional gravity is developed. Fundamental gravitational field variables are dreibein fields and Lorentz gauge potentials, and the theory is underlain with the Riemann-Cartan space-time. The most general gravitational Lagrangian density, which is at most quadratic in curvature and torsion tensors and invariant under local Lorentz transformations and under general coordinate transformations, is given. Gravitational field equations are studied in detail, and solutions of the equations for weak gravitational fields are examined for the case with a static, \lq \lq spin"less point like source. We find, among other things, the following: (1)Solutions of the vacuum Einstein equation satisfy gravitational field equations in the vacuum in this theory. (2)For a class of the parameters in the gravitational Lagrangian density, the torsion is \lq \lq frozen" at the place where \lq \lq spin" density of the source field is not vanishing. In this case, the field equation actually agrees with the Einstein equation, when the source field is \lq \lq spin"less. (3)A teleparallel theory developed in a previous paper is \lq \lq included as a solution" in a limiting case. (4)A Newtonian limit is obtainable, if the parameters in the Lagrangian density satisfy certain conditions.Comment: 27pages, RevTeX, OCU-PHYS-15

    Memory effects in attenuation and amplification quantum processes

    Full text link
    With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable to the typical relaxation time of the channel environment. We introduce a model of a bosonic memory channel, describing correlated noise effects in quantum-optical processes via attenuating or amplifying media. To study such a channel model, we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.Comment: 10 pages, 7 figures, close to the published versio

    Predicting and verifying transition strengths from weakly bound molecules

    Full text link
    We investigated transition strengths from ultracold weakly bound 41K87Rb molecules produced via the photoassociation of laser-cooled atoms. An accurate potential energy curve of the excited state (3)1Sigma+ was constructed by carrying out direct potential fit analysis of rotational spectra obtained via depletion spectroscopy. Vibrational energies and rotational constants extracted from the depletion spectra of v'=41-50 levels were combined with the results of the previous spectroscopic study, and they were used for modifying an ab initio potential. An accuracy of 0.14% in vibrational level spacing and 0.3% in rotational constants was sufficient to predict the large observed variation in transition strengths among the vibrational levels. Our results show that transition strengths from weakly bound molecules are a good measure of the accuracy of an excited state potential.Comment: 7 pages, 7 figure
    corecore