24 research outputs found

    Two years follow-up study of the pain-relieving effect of gold bead implantation in dogs with hip-joint arthritis

    Get PDF
    Seventy-eight dogs with pain from hip dysplasia participated in a six-month placebo-controlled, double-blinded clinical trial of gold bead implantation. In the present, non-blinded study, 73 of these dogs were followed for an additional 18 months to evaluate the long-term pain-relieving effect of gold bead implantation. The recently-published results of the six month period revealed that 30 of the 36 dogs (83%) in the gold implantation group showed significant improvement (p = 0.02), included improved mobility and reduction in the signs of pain, compared to the placebo group (60% improvement). In the long-term two-year follow-up study, 66 of the 73 dogs had gold implantation and seven dogs continued as a control group. The 32 dogs in the original placebo group had gold beads implanted and were followed for a further 18 months. A certified veterinary acupuncturist used the same procedure to insert the gold beads as in the blinded study, and the owners completed the same type of detailed questionnaires. As in the blinded study, one investigator was responsible for all the assessments of each dog. The present study revealed that the pain-relieving effect of gold bead implantation observed in the blinded study continued throughout the two-year follow-up period

    In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model

    No full text
    Objective: The pathogenesis of osteoarthritis (OA) includes cartilage degeneration, synovial inflammation, and bone changes. Slowly, the sequence and inter-relationship of these features is becoming clearer. Early models of OA suggest thinning of the subchondral plate in addition to trabecular bone changes. In the present study subchondral bone changes were studied in the canine anterior cruciate ligament transection (ACLT)-meniscectomy model. This model is characterized by intra-joint variability with respect to cartilage damage (predominantly medial) and loading (lateral unloading due to a shifted axis). Methods: In 13 Labrador dogs, OA was induced by transection of the anterior cruciate ligament and removal of the medial meniscus. Twelve weeks later, cartilage integrity was evaluated histologically using the modified Mankin score (0-11), and proteoglycan content was determined by Alcian Blue assay. Bone architecture of the tibia was quantified by micro-CT. Results: Cartilage damage was severe in the medial compartment (Mankin score +3.5, glycosaminoglycan (GAG) content -28%) and mild in the lateral compartment (Mankin score +1.6, GAG content -15%). Thinning and porosity of the subchondral plate were only present on the medial side (-21%, +87%, respectively). Interestingly, changes in trabecular bone structure did almost not occur in the medial compartment (volume fraction -7%) but were clear in the lateral compartment (-20%). Conclusion: Thinning of the subchondral plate is a localized phenomenon related to cartilage degeneration while trabecular bone changes are related to mechanical (un)loading. The different mechanisms responsible for bone changes in OA should be taken in account when designing and interpreting studies interfering with bone turnover in the treatment of OA. (C) 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved

    In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model

    Get PDF
    Objective: The pathogenesis of osteoarthritis (OA) includes cartilage degeneration, synovial inflammation, and bone changes. Slowly, the sequence and inter-relationship of these features is becoming clearer. Early models of OA suggest thinning of the subchondral plate in addition to trabecular bone changes. In the present study subchondral bone changes were studied in the canine anterior cruciate ligament transection (ACLT)-meniscectomy model. This model is characterized by intra-joint variability with respect to cartilage damage (predominantly medial) and loading (lateral unloading due to a shifted axis). Methods: In 13 Labrador dogs, OA was induced by transection of the anterior cruciate ligament and removal of the medial meniscus. Twelve weeks later, cartilage integrity was evaluated histologically using the modified Mankin score (0-11), and proteoglycan content was determined by Alcian Blue assay. Bone architecture of the tibia was quantified by micro-CT. Results: Cartilage damage was severe in the medial compartment (Mankin score +3.5, glycosaminoglycan (GAG) content -28%) and mild in the lateral compartment (Mankin score +1.6, GAG content -15%). Thinning and porosity of the subchondral plate were only present on the medial side (-21%, +87%, respectively). Interestingly, changes in trabecular bone structure did almost not occur in the medial compartment (volume fraction -7%) but were clear in the lateral compartment (-20%). Conclusion: Thinning of the subchondral plate is a localized phenomenon related to cartilage degeneration while trabecular bone changes are related to mechanical (un)loading. The different mechanisms responsible for bone changes in OA should be taken in account when designing and interpreting studies interfering with bone turnover in the treatment of OA. (C) 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved
    corecore