738 research outputs found
Gravity-induced birefringence within the framework of Poincare gauge theory
Gauge theories of gravity provide an elegant and promising extension of
general relativity. In this paper we show that the Poincar\'e gauge theory
exhibits gravity-induced birefringence under the assumption of a specific gauge
invariant nonminimal coupling between torsion and Maxwell's field. Furthermore
we give for the first time an explicit expression for the induced phaseshift
between two orthogonal polarization modes within the Poincar\'e framework.
Since such a phaseshift can lead to a depolarization of light emitted from an
extended source this effect is, in principle, observable. We use white dwarf
polarimetric data to constrain the essential coupling constant responsible for
this effect.Comment: 12 pages, accepted for publication by Physical Review
Torsion nonminimally coupled to the electromagnetic field and birefringence
In conventional Maxwell--Lorentz electrodynamics, the propagation of light is
influenced by the metric, not, however, by the possible presence of a torsion
T. Still the light can feel torsion if the latter is coupled nonminimally to
the electromagnetic field F by means of a supplementary Lagrangian of the type
l^2 T^2 F^2 (l = coupling constant). Recently Preuss suggested a specific
nonminimal term of this nature. We evaluate the spacetime relation of Preuss in
the background of a general O(3)-symmetric torsion field and prove by
specifying the optical metric of spacetime that this can yield birefringence in
vacuum. Moreover, we show that the nonminimally coupled homogeneous and
isotropic torsion field in a Friedmann cosmos affects the speed of light.Comment: Revtex, 12 pages, no figure
Testing the Equivalence Principle by Lamb shift Energies
The Einstein Equivalence Principle has as one of its implications that the
non-gravitational laws of physics are those of special relativity in any local
freely-falling frame. We consider possible tests of this hypothesis for systems
whose energies are due to radiative corrections, i.e. which arise purely as a
consequence of quantum field theoretic loop effects. Specifically, we evaluate
the Lamb shift transition (as given by the energy splitting between the
and atomic states) within the context of violations of
local position invariance and local Lorentz invariance, as described by the formalism. We compute the associated red shift and time dilation
parameters, and discuss how (high-precision) measurements of these quantities
could provide new information on the validity of the equivalence principle.Comment: 40 pages, latex, epsf, 1 figure, final version which appears in
Physical Review
On Loop Quantum Gravity Phenomenology and the Issue of Lorentz Invariance
A simple model is constructed which allows to compute modified dispersion
relations with effects from loop quantum gravity. Different quantization
choices can be realized and their effects on the order of corrections studied
explicitly. A comparison with more involved semiclassical techniques shows that
there is agreement even at a quantitative level.
Furthermore, by contrasting Hamiltonian and Lagrangian descriptions we show
that possible Lorentz symmetry violations may be blurred as an artifact of the
approximation scheme. Whether this is the case in a purely Hamiltonian analysis
can be resolved by an improvement in the effective semiclassical analysis.Comment: 16 pages, RevTeX
On alternative approaches to Lorentz violation in loop quantum gravity inspired models
Recent claims point out that possible violations of Lorentz symmetry
appearing in some semiclassical models of extended matter dynamics motivated by
loop quantum gravity can be removed by a different choice of canonically
conjugated variables. In this note we show that such alternative is
inconsistent with the choice of variables in the underlying quantum theory
together with the semiclassical approximation, as long as the correspondence
principle is maintained. A consistent choice will violate standard Lorentz
invariance. Thus, to preserve a relativity principle in this framework, the
linear realization of Lorentz symmetry should be extended or superseded.Comment: 4 pages, revtex4, no figures, references adde
Possible direct method to determine the radius of a star from the spectrum of gravitational wave signals
We computed the spectrum of gravitational waves from a dust disk star of
radius R inspiraling into a Kerr black hole of mass M and specific angular
momentum a. We found that when R is much larger than the wave length of the
quasinormal mode, the spectrum has several peaks and the separation of peaks
is proportional to irrespective of M and a. This
suggests that the radius of the star in coalescing binary black hole - star
systems may be determined directly from the observed spectrum of gravitational
wave. This also suggests that the spectrum of the radiation may give us
important information in gravitational wave astronomy as in optical astronomy.Comment: 4 pages with 3 eps figures, revtex.sty, accepted for publication in
Phys. Rev. Let
An astronomical search for evidence of new physics: Limits on gravity-induced birefringence from the magnetic white dwarf RE J0317-853
The coupling of the electromagnetic field directly with gravitational gauge
fields leads to new physical effects that can be tested using astronomical
data. Here we consider a particular case for closer scrutiny, a specific
nonminimal coupling of torsion to electromagnetism, which enters into a
metric-affine geometry of space-time. We show that under the assumption of this
nonminimal coupling, spacetime is birefringent in the presence of such a
gravitational field. This leads to the depolarization of light emitted from
extended astrophysical sources. We use polarimetric data of the magnetic white
dwarf to set strong constraints on the essential coupling
constant for this effect, giving k^2 \lsim (19 {m})^2 .Comment: Statements about Moffat's NGT modified. Accepted for publication in
Phys.Rev.
Solar constraints on new couplings between electromagnetism and gravity
The unification of quantum field theory and general relativity is a fundamental goal of modern physics. In many cases, theoretical efforts to achieve this goal introduce auxiliary gravitational fields, ones in addition to the familiar symmetric second-rank tensor potential of general relativity, and lead to nonmetric theories because of direct couplings between these auxiliary fields and matter. Here, we consider an example of a metric-affine gauge theory of gravity in which torsion couples nonminimally to the electromagnetic field. This coupling causes a phase difference to accumulate between different polarization states of light as they propagate through the metric-affine gravitational field. Solar spectropolarimetric observations are reported and used to set strong constraints on the relevant coupling constant k:k(2)\u3c (2.5 km)(2)
- âŠ