22,799 research outputs found
GPU-Based Volume Rendering of Noisy Multi-Spectral Astronomical Data
Traditional analysis techniques may not be sufficient for astronomers to make
the best use of the data sets that current and future instruments, such as the
Square Kilometre Array and its Pathfinders, will produce. By utilizing the
incredible pattern-recognition ability of the human mind, scientific
visualization provides an excellent opportunity for astronomers to gain
valuable new insight and understanding of their data, particularly when used
interactively in 3D. The goal of our work is to establish the feasibility of a
real-time 3D monitoring system for data going into the Australian SKA
Pathfinder archive.
Based on CUDA, an increasingly popular development tool, our work utilizes
the massively parallel architecture of modern graphics processing units (GPUs)
to provide astronomers with an interactive 3D volume rendering for
multi-spectral data sets. Unlike other approaches, we are targeting real time
interactive visualization of datasets larger than GPU memory while giving
special attention to data with low signal to noise ratio - two critical aspects
for astronomy that are missing from most existing scientific visualization
software packages. Our framework enables the astronomer to interact with the
geometrical representation of the data, and to control the volume rendering
process to generate a better representation of their datasets.Comment: 4 pages, 1 figure, to appear in the proceedings of ADASS XIX, Oct 4-8
2009, Sapporo, Japan (ASP Conf. Series
Unleashing the Power of Distributed CPU/GPU Architectures: Massive Astronomical Data Analysis and Visualization case study
Upcoming and future astronomy research facilities will systematically
generate terabyte-sized data sets moving astronomy into the Petascale data era.
While such facilities will provide astronomers with unprecedented levels of
accuracy and coverage, the increases in dataset size and dimensionality will
pose serious computational challenges for many current astronomy data analysis
and visualization tools. With such data sizes, even simple data analysis tasks
(e.g. calculating a histogram or computing data minimum/maximum) may not be
achievable without access to a supercomputing facility.
To effectively handle such dataset sizes, which exceed today's single machine
memory and processing limits, we present a framework that exploits the
distributed power of GPUs and many-core CPUs, with a goal of providing data
analysis and visualizing tasks as a service for astronomers. By mixing shared
and distributed memory architectures, our framework effectively utilizes the
underlying hardware infrastructure handling both batched and real-time data
analysis and visualization tasks. Offering such functionality as a service in a
"software as a service" manner will reduce the total cost of ownership, provide
an easy to use tool to the wider astronomical community, and enable a more
optimized utilization of the underlying hardware infrastructure.Comment: 4 Pages, 1 figures, To appear in the proceedings of ADASS XXI, ed.
P.Ballester and D.Egret, ASP Conf. Serie
Intending to be ethical: An examination of consumer choice in sweatshop avoidance
While much research in ethical consumption has focused on contexts such as food, this research explores ethical consumer decision-making in the context of intention to avoid sweatshop apparel. This research seeks to deepen the Theory of Planned Behavior with respect to the motivation and volitional stages underlying behavior. The findings of the research, based on 794 consumers, are novel and support an enriched framework which reveals that the role of attitude, subjective norm and perceived behavioral control are mediated by desire, intention and plan. The findings have implications for research seeking to address the ‘intention-behavior’ gap
"I know what a Muslim really is": how political context predisposes the perceived need for an objective Muslim identity
This article explores the process by which Western Muslim young adults develop the need to experience an ‘objective’ religious identity. We interviewed 20 Western Muslim young adults born in Montreal, Berlin, and Copenhagen within the age range of 18–25, exploring their religious identity development. The interviews were semi-structured and open-ended. Thematic content analysis was used to explore patterns in their narratives. The participants disliked the perceived ethnocentric Muslim identity of their parents, which they sought to ‘purify’ for themselves from ‘cultural contamination’. There were two important elements underlying the process of religious identity objectification: experience of anti-Muslim political discourse and exposure to religious diversity in the aftermath of deterritorialisation
- …