Traditional analysis techniques may not be sufficient for astronomers to make
the best use of the data sets that current and future instruments, such as the
Square Kilometre Array and its Pathfinders, will produce. By utilizing the
incredible pattern-recognition ability of the human mind, scientific
visualization provides an excellent opportunity for astronomers to gain
valuable new insight and understanding of their data, particularly when used
interactively in 3D. The goal of our work is to establish the feasibility of a
real-time 3D monitoring system for data going into the Australian SKA
Pathfinder archive.
Based on CUDA, an increasingly popular development tool, our work utilizes
the massively parallel architecture of modern graphics processing units (GPUs)
to provide astronomers with an interactive 3D volume rendering for
multi-spectral data sets. Unlike other approaches, we are targeting real time
interactive visualization of datasets larger than GPU memory while giving
special attention to data with low signal to noise ratio - two critical aspects
for astronomy that are missing from most existing scientific visualization
software packages. Our framework enables the astronomer to interact with the
geometrical representation of the data, and to control the volume rendering
process to generate a better representation of their datasets.Comment: 4 pages, 1 figure, to appear in the proceedings of ADASS XIX, Oct 4-8
2009, Sapporo, Japan (ASP Conf. Series