588 research outputs found

    Erratum: The helium abundance in the ejecta of U Scorpii

    Get PDF
    U Scorpii (U Sco) is a recurrent nova which has been observed in outburst on 10 occasions, most recently in 2010. We present near-infrared (near-IR) and optical spectroscopy of the 2010 outburst of U Sco. The reddening of U Sco is found to be E(B − V) = 0.14 ± 0.12, consistent with previous determinations, from simultaneous optical and near-IR observations. The spectra show the evolution of the linewidths and profiles to be consistent with previous outbursts. Velocities are found to be up to 14 000 km s−1 in broad components and up to 1800 km s−1 in narrow-line components, which become visible around day 8 due to changes in the optical depth. From the spectra we derive a helium abundance of N(He)/N(H) = 0.073 ± 0.031 from the most reliable lines available; this is lower than most other estimates and indicates that the secondary is not helium-rich, as previous studies have suggested

    The role of cisapride in the treatment of pediatric gastroesophageal reflux.

    Get PDF

    Chandra Observations of the Dwarf Nova WX Hyi in Quiescence

    Full text link
    We report Chandra observations of the dwarf nova WX Hyi in quiescence. The X-ray spectrum displays strong and narrow emission lines of N, O, Mg, Ne, Si, S and Fe. The various ionization states implied by the lines suggest that the emission is produced within a flow spanning a wide temperature range, from T ~ 10^6 K to T >~ 10^8 K. Line diagnostics indicate that most of the radiation originates from a very dense region, with n ~ 10^{13}-10^{14} cm^{-3}. The Chandra data allow the first tests of specific models proposed in the literature for the X-ray emission in quiescent dwarf novae. We have computed the spectra for a set of models ranging from hot boundary layers, to hot settling flows solutions, to X-ray emitting coronae. WX Hyi differs from other dwarf novae observed at minimum in having much stronger low temperature lines, which prove difficult to fit with existing models, and possibly a very strong, broad O VII line, perhaps produced in a wind moving at a few x 10^3 km/s. The accretion rate inferred from the X-rays is lower than the value inferred from the UV. The presence of high-velocity mass ejection could account for this discrepancy while at the same time explaining the presence of the broad O VII line. If this interpretation is correct, it would provide the first detection of a wind from a dwarf nova in quiescence.Comment: accepted to ApJ; 19 pages, 3 figures, 1 tabl

    Part 12, Authors: P To Qvortrup

    Get PDF
    United States Department of Agriculture, Bureau of Animal Industr

    Feeling the Heat: Investigating the dual assault of Zymoseptoria tritici and Heat Stress on Wheat (Triticum aestivum)

    Get PDF
    As a result of climate change, field conditions are increasingly challenging for crops. Research has shown how elevated temperatures affect crop performance, yet the impact of temperature on host-pathogen relationships remains unknown. Understanding the effects of combined abiotic and biotic stresses on crop plants and the plant-microbial interaction is crucial in developing strategies to improve crop stress tolerance and manage diseases effectively. Lipids sense, signal, and mitigate temperature elevation effects, and lipid remodelling plays a key role in the plant and fungal response to heat stress. Our study uses a systems approach to examine the Z. tritici wheat model system, combining transcriptomics, lipidomics, and phenotyping to decipher the impact of high-temperature stress on the plant-pathogen interaction. Microscopy in vivo and RNA-Seq analyses confirmed that Z. tritici responds to high-temperature treatments with morphological and transcriptomic changes. Temperature-related configuration of the transcriptome was associated with the accessory chromosomes and expression of ‘accessory’ pan-genome-derived genes. Metabolism-related gene expression predominated, indicated by GO enrichment and analysis of KOG classes, and large-scale lipid remodelling was likely given the proportion of lipid transport and metabolism-related expression changes in response to temperature. Changes in lipid content and composition were then validated by LC-MS analysis. Heat-responsive fungal genes and pathways, including scramblase family genes, are being tested by reverse genetics to ascertain their importance for fungal adaption to elevated temperatures. Elevated temperature schemes were applied to wheat to study the impact of combined stress on the plant-pathogen interaction, based on long-term climate data from Rothamsted Research, using transcriptomic, lipidomic and phenotypic analyses. Comparing non-infected and infected wheat plants under typical and elevated temperatures. Our initial analysis of the transcriptomic data indicates a delay in the development of Z. tritici, followed by its adaptation to the warmer environment. Once the infection was established, the fungus exhibited resilience to the impact of higher external temperatures. Our results indicate that temperature elevations associated with climate change directly impact plant-pathogen interactions. Furthermore, the study demonstrates a need for further detailed understanding to sustain crop resilience

    Part 13, Authors: R To Rzoska

    Get PDF
    United States Department of Agriculture, Bureau of Animal Industr

    Part 11, Authors: N To Ozzard

    Get PDF
    United States Department of Agriculture, Bureau of Animal Industr

    The Sorghum QTL Atlas: a powerful tool for trait dissection, comparative genomics and crop improvement

    Get PDF
    Key message: We describe the development and application of the Sorghum QTL Atlas, a high-resolution, open-access research platform to facilitate candidate gene identification across three cereal species, sorghum, maize and rice. Abstract: The mechanisms governing the genetic control of many quantitative traits are only poorly understood and have yet to be fully exploited. Over the last two decades, over a thousand QTL and GWAS studies have been published in the major cereal crops including sorghum, maize and rice. A large body of information has been generated on the genetic basis of quantitative traits, their genomic location, allelic effects and epistatic interactions. However, such QTL information has not been widely applied by cereal improvement programs and genetic researchers worldwide. In part this is due to the heterogeneous nature of QTL studies which leads QTL reliability variation from study to study. Using approaches to adjust the QTL confidence interval, this platform provides access to the most updated sorghum QTL information than any database available, spanning 23 years of research since 1995. The QTL database provides information on the predicted gene models underlying the QTL CI, across all sorghum genome assembly gene sets and maize and rice genome assemblies and also provides information on the diversity of the underlying genes and information on signatures of selection in sorghum. The resulting high-resolution, open-access research platform facilitates candidate gene identification across 3 cereal species, sorghum, maize and rice. Using a number of trait examples, we demonstrate the power and resolution of the resource to facilitate comparative genomics approaches to provide a bridge between genomics and applied breeding. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature

    Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration

    Get PDF
    Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia). The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pretreatment on hypoxia survival of Arabidopsis (Arabidopsis thaliana) primary root tips. Both hypoxia itself and re-oxygenation following hypoxia are highly damaging to root tip cells, and ethylene pretreatments reduced this damage. Ethylene pretreatment alone altered the abundance of transcripts and proteins involved in hypoxia responses, root growth, translation, and reactive oxygen species (ROS) homeostasis. Through imaging and manipulating ROS abundance in planta, we demonstrated that ethylene limited excessive ROS formation during hypoxia and subsequent re-oxygenation and improved oxidative stress survival in a PHYTOGLOBIN1-dependent manner. In addition, we showed that root growth cessation via ethylene and auxin occurred rapidly and that this quiescence behavior contributed to enhanced hypoxia tolerance. Collectively, our results show that the early flooding signal ethylene modulates a variety of processes that all contribute to hypoxia surviva
    • …
    corecore