404 research outputs found

    The human immunodeficiency virus type 1 Vpr protein and its carboxy-terminally truncated form induce apoptosis in tumor cells

    Get PDF
    The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces apoptosis after cell cycle arrest at the G2 phase in primate cells. We have reported previously that C81, a carboxy-terminally truncated form of Vpr, interferes with cell proliferation and results in apoptosis without G2 arrest. Here, we investigated whether this property of Vpr and C81 could be exploited for use as a potential anticancer agent. First, we demonstrated that C81 induced G1 arrest and apoptosis in all tumor cells tested. In contrast, Vpr resulted in G2 arrest and apoptosis in HeLa and 293 T cells. Vpr also suppressed the damaged-DNA-specific binding protein 1 (DDB1) in HepG2 cells, thereby inducing apoptosis without G2 arrest. G2 arrest was restored when DDB1 was overexpressed in cells that also expressed Vpr. Surprisingly, C81 induced G2 arrest when DDB1 was overexpressed in HepG2 cells, but not in HeLa or 293 T cells. Thus, the induction of Vpr- and C81-mediated cell cycle arrest appears to depend on the cell type, whereas apoptosis was observed in all tumor cells tested. Overall, Vpr and C81 have potential as novel therapeutic agents for treatment of cancer

    Effects of hydrogen-rich water on abnormalities in a SHR.Cg-Leprcp/NDmcr rat - a metabolic syndrome rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrogen (H<sub>2</sub>), a potent free radical scavenger, selectively reduces the hydroxyl radical, which is the most cytotoxic of the reactive oxygen species (ROS). An increase in oxygen free radicals induces oxidative stress, which is known to be involved in the development of metabolic syndrome. Therefore, we investigated whether hydrogen-rich water (HRW) affects metabolic abnormalities in the metabolic syndrome rat model, SHR.Cg-<it>Lepr<sup>cp</sup></it>/NDmcr (SHR-cp).</p> <p>Methods</p> <p>Male SHR-cp rats (5 weeks old) were divided into 2 groups: an HRW group was given oral HRW for 16 weeks, and a control group was given distilled water. At the end of the experiment, each rat was placed in a metabolic cage for 24 h, fasted for 12 h, and anesthetized; the blood and kidneys were then collected.</p> <p>Results</p> <p>Sixteen weeks after HRW administration, the water intake and urine flow measured in the metabolic cages were significantly higher in the HRW group than in the control group. The urinary ratio of albumin to creatinine was significantly lower and creatinine clearance was higher in the HRW group than in the control group. After the 12-h fast, plasma urea nitrogen and creatinine in the HRW group were significantly lower than in the control group. The plasma total antioxidant capacity was significantly higher in the HRW group than in the control group. The glomerulosclerosis score for the HRW group was significantly lower than in the control group, and a significantly positive correlation was observed between this score and plasma urea nitrogen levels.</p> <p>Conclusion</p> <p>The present findings suggest that HRW conferred significant benefits against abnormalities in the metabolic syndrome model rats, at least by preventing and ameliorating glomerulosclerosis and creatinine clearance.</p
    corecore