9,436 research outputs found
Gauge invariance, massless modes and topology of gauge fields in multi-band superconductors
Multi-phase physics is a new physics of multi-gap superconductors. Multi-band
superconductors exhibit many interesting and novel properties. We investigate
the dynamics of the phase-difference mode and show that this mode yields a new
excitation mode. The phase-difference mode is represented as an abelian vector
field. There are massless modes when the number of gaps is greater than three
and the Josephson term is frustrated. The fluctuation of phase-difference modes
with non-trivial topology leads to the existence of a fractional-quantum flux
vortex in a magnetic field. A superconductor with a fractional-quantum flux
vortex is regarded as a topological superconductor with the integer Chern
number.Comment: Proceedings of the 12th Asia and Pacific Physics Conference (2013
Nonlocally-correlated disorder and delocalization in one dimension II: Localization length
In the previous paper (cond-mat/9809323), we calculated the density of staes
in the random-mass Dirac fermion system. In this paper, we obtain the mean
localization length of the single-fermion Greem's function by using the
supersymmetric methods. It is shown that the localization length is a
increasing function of the correation length of the disorders. This result is
in agreement with the density of states and the numerical studies
(cond-mat/9903389).Comment: Latex, 25 page
Rhythmic Motion of a Droplet under a DC Electric Field
The effect of a stationary electric field on a water droplet with a diameter
of several tens micrometers in oil was examined. Such a droplet exhibits
repetitive translational motion between the electrodes in a spontaneous manner.
The state diagram of this oscillatory motion was deduced; at 0-20 V the droplet
is fixed at the surface of the electrode, at 20-70 V the droplet exhibits
small-amplitude oscillatory motion between the electrodes, and at 70-100 V the
droplet shows large-amplitude periodic motion between the electrodes. The
observed rhythmic motion is explained in a semi-quantitative manner by using
differential equations, which includes the effect of charging the droplet under
an electric field. We also found that twin droplets exhibit synchronized
rhythmic motion between the electrodes
- …