69 research outputs found

    Accelerated iTBS treatment applied to the left DLPFC in depressed patients results in a rapid volume increase in the left hippocampal dentate gyrus, not driven by brain perfusion

    Get PDF
    Background: Accelerated intermittent Theta Burst Stimulation (aiTBS) has been shown to be an effective antidepressant treatment. Although neurobiological changes shortly after this intervention have been reported, whether aiTBS results in structural brain changes must still be determined. Furthermore, it possible that rapid volumetric changes are driven by factors other than neurotrophic processes. Objectives: We examined whether possible grey matter volumetric (GMV) increases after aiTBS treatment could be driven by increased brain perfusion, measured by Arterial Spin Labeling (ASL). Methods: 46 treatment-resistant depressed patients were randomized to receive 20 sessions of active or sham iTBS applied to the left dorsolateral prefrontal cortex. All sessions were delivered over 4 days at 5 sessions per day (trial registration: http://clinicaltrials.gov/show/NCT01832805). Patients were scanned the day before starting stimulation and three days after aiTBS. Results: There was a significant cluster of increased left hippocampal GMV in the dentate gyrus related to HRSD changes after active aiTBS, but not after sham stimulation. These GMV increases became more pronounced when accounting for changes in cerebral perfusion. Conclusions: Active, but not sham, aiTBS, resulted in acute volumetric changes in parts of the left dentate gyrus, suggesting a connection with adult neurogenesis. Furthermore, taking cerebral perfusion measurements into account impacts on detection of the GMV changes. Whether these hippocampal volumetric changes produced by active aiTBS are necessary for long-term clinical improvement remains to be determined. (C) 2020 The Author(s). Published by Elsevier Inc

    A New Approach to Spatial Covariance Modeling of Functional Brain Imaging Data: Ordinal Trend Analysis

    Get PDF
    In neuroimaging studies of human cognitive abilities, brain activation patterns that include regions that are strongly interactive in response to experimental task demands are of particular interest. Among the existing network analyses, partial least squares (PLS; McIntosh, 1999; McIntosh, Bookstein, Haxby, & Grady, 1996) has been highly successful, particularly in identifying group differences in regional functional connectivity, including differences as diverse as those associated with states of awareness and normal aging. However, we address the need for a within-group model that identifies patterns of regional functional connectivity that exhibit sustained activity across graduated changes in task parameters. For example, predictions of sustained connectivity are commonplace in studies of cognition that involve a series of tasks over which task difficulty increases (Baddeley, 2003). We designed ordinal trend analysis (OrT) to identify activation patterns that increase monotonically in their expression as the experimental task parameter increases, while the correlative relationships between brain regions remain constant. Of specific interest are patterns that express positive ordinal trends on a subject-by-subject basis. A unique feature of OrT is that it recovers information about functional connectivity based solely on experimental design variables. In particular, there is no requirement by OrT to provide either a quantitative model of the uncertain relationship between functional brain circuitry and subject variables (e.g., task performance and IQ) or partial information about the regions that are functionally connected. In this letter, we provide a step-by-step recipe of the computations performed in the new OrT analysis, including a description of the inferential statistical methods applied. Second, we describe applications of OrT to an event-related fMRI study of verbal working memory and H2 15 O-PET study of visuomotor learning. In sum, OrT has potential applications to not only studies of young adults and their cognitive abilities, but also studies of normal aging and neurological and psychiatric disease

    Brain Networks Associated with Cognitive Reserve in Healthy Young and Old Adults

    Get PDF
    In order to understand the brain networks that mediate cognitive reserve, we explored the relationship between subjects' network expression during the performance of a memory test and an index of cognitive reserve. Using H215O positron emission tomography, we imaged 17 healthy older subjects and 20 young adults while they performed a serial recognition memory task for nonsense shapes under two conditions: low demand, with a unique shape presented in each study trial; and titrated demand, with a study list size adjusted so that each subject recognized shapes at 75% accuracy. A factor score that summarized years of education, and scores on the NART and the WAIS-R Vocabulary subtest was used as an index of cognitive reserve. The scaled subprofile model was used to identify a set of functionally connected regions (or topography) that changed in expression across the two task conditions and was differentially expressed by the young and elderly subjects. The regions most active in this topography consisted of right hippocampus, posterior insula, thalamus, and right and left operculum; we found concomitant deactivation in right lingual gyrus, inferior parietal lobe and association cortex, left posterior cingulate, and right and left calcarine cortex. Young subjects with higher cognitive reserve showed increased expression of the topography across the two task conditions. Because this topography, which is responsive to increased task demands, was differentially expressed as a function of reserve level, it may represent a neural manifestation of innate or acquired reserve. In contrast, older subjects with higher cognitive reserve showed decreased expression of the topography across tasks. This suggests some functional reorganization of the network used by the young subjects. Thus, for the old subjects this topography may represent an altered, compensatory network that is used to maintain function in the face of age-related physiological changes
    • …
    corecore