324 research outputs found
The Effect of Splayed Pins on Vortex Creep and Critical Currents
We study the effects of splayed columnar pins on the vortex motion using
realistic London Langevin simulations. At low currents vortex creep is strongly
suppressed, whereas the critical current j_c is enhanced only moderately.
Splaying the pins generates an increasing energy barrier against vortex
hopping, and leads to the forced entanglement of vortices, both of which
suppress creep efficiently. On the other hand splaying enhances kink nucleation
and introduces intersecting pins, which cut off the energy barriers. Thus the
j_c enhancement is strongly parameter sensitive. We also characterize the angle
dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure
An explicit height bound for the classical modular polynomial
For a prime m, let Phi_m be the classical modular polynomial, and let
h(Phi_m) denote its logarithmic height. By specializing a theorem of Cohen, we
prove that h(Phi_m) <= 6 m log m + 16 m + 14 sqrt m log m. As a corollary, we
find that h(Phi_m) <= 6 m log m + 18 m also holds. A table of h(Phi_m) values
is provided for m <= 3607.Comment: Minor correction to the constants in Theorem 1 and Corollary 9. To
appear in the Ramanujan Journal. 17 pages
An exploration of ebook selection behavior in academic library collections
Academic libraries have offered ebooks for some time, however little is known about how readers interact with them while making relevance decisions. In this paper we seek to address that gap by analyzing ebook transaction logs for books in a university library
Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors
We study the ground state and low energy excitations of vortices pinned to
columnar defects in superconductors, taking into account the long--range
interaction between the fluxons. We consider the ``underfilled'' situation in
the Bose glass phase, where each flux line is attached to one of the defects,
while some pins remain unoccupied. By exploiting an analogy with disordered
semiconductors, we calculate the spatial configurations in the ground state, as
well as the distribution of pinning energies, using a zero--temperature Monte
Carlo algorithm minimizing the total energy with respect to all possible
one--vortex transfers. Intervortex repulsion leads to strong correlations
whenever the London penetration depth exceeds the fluxon spacing. A pronounced
peak appears in the static structure factor for low filling fractions . Interactions lead to a broad Coulomb gap in the distribution of
pinning energies near the chemical potential , separating
the occupied and empty pins. The vanishing of at leads to a
considerable reduction of variable--range hopping vortex transport by
correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact
[email protected]
Vortex wandering in a forest of splayed columnar defects
We investigate the scaling properties of single flux lines in a random
pinning landscape consisting of splayed columnar defects. Such correlated
defects can be injected into Type II superconductors by inducing nuclear
fission or via direct heavy ion irradiation. The result is often very efficient
pinning of the vortices which gives, e.g., a strongly enhanced critical
current. The wandering exponent \zeta and the free energy exponent \omega of a
single flux line in such a disordered environment are obtained analytically
from scaling arguments combined with extreme-value statistics. In contrast to
the case of point disorder, where these exponents are universal, we find a
dependence of the exponents on details in the probability distribution of the
low lying energies of the columnar defects. The analytical results show
excellent agreement with numerical transfer matrix calculations in two and
three dimensions.Comment: 11 pages, 9 figure
Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects
We report measurements of the irreversible magnetization M_i of a large
number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them
exhibit a maximum in M_i when the density of vortices equals the density of
tracks, at temperatures above 40K. We show that the observation of these
matching field effects is constrained to those crystals where the orientational
and pinning energy dispersion of the CD system lies below a certain threshold.
The amount of such dispersion is determined by the mass and energy of the
irradiation ions, and by the crystal thickness. Time relaxation measurements
show that the matching effects are associated with a reduction of the creep
rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
Melting and Dimensionality of the Vortex Lattice in Underdoped YBa2Cu3O6.60
Muon spin rotation measurements of the magnetic field distribution in the
vortex state of the oxygen deficient high-Tc superconductor YBa{2}Cu{3}O{6.60}
reveal a vortex-lattice melting transition at much lower temperature than that
in the fully oxygenated material. The transition is best described by a model
in which adjacent layers of ``pancake'' vortices decouple in the liquid phase.
Evidence is also found for a pinning-induced crossover from a solid 3D to
quasi-2D vortex lattice, similar to that observed in the highly anisotropic
superconductor Bi{2+x}Sr{2-x}CaCu{2}O{8+y}.Comment: 8 pages, 4 figures, 5 postscript file
On validating predictions of plant motion in coupled biomechanical-flow models
Recent developments in integrated biomechanical-flow models have enabled the prediction of the influence of vegetation on the flow field and associated feedback processes. However, to date, such models have only been validated on the hydraulic predictions and/or mean plant position. Here we introduce an approach where dynamic surrogate plant motion, measured directly in flume experiments, is used to allow a validation approach capable of assessing the accuracy of time-dependent flow–vegetation interaction within a numerical model. We use this method to demonstrate the accuracy of an existing Euler–Bernoulli beam model in predicting both mean and dynamic plant position through time and space
Interaction-free generation of entanglement
In this paper, we study how to generate entanglement by interaction-free
measurement. Using Kwiat et al.'s interferometer, we construct a two-qubit
quantum gate that changes a particle's trajectory according to the other
particle's trajectory. We propose methods for generating the Bell state from an
electron and a positron and from a pair of photons by this gate. We also show
that using this gate, we can carry out the Bell measurement with the
probability of 3/4 at the maximum and execute a controlled-NOT operation by the
method proposed by Gottesman and Chuang with the probability of 9/16 at the
maximum. We estimate the success probability for generating the Bell state by
our procedure under imperfect interaction.Comment: 18 pages, Latex2e, 11 eps figures, v2: minor corrections and one
reference added, v3: a minor correctio
Enhanced Symmetries in Multiparameter Flux Vacua
We give a construction of type IIB flux vacua with discrete R-symmetries and
vanishing superpotential for hypersurfaces in weighted projective space with
any number of moduli. We find that the existence of such vacua for a given
space depends on properties of the modular group, and for Fermat models can be
determined solely by the weights of the projective space. The periods of the
geometry do not in general have arithmetic properties, but live in a vector
space whose properties are vital to the construction.Comment: 32 pages, LaTeX. v2: references adde
- …
