425 research outputs found

    OCTAD-S: Digital Fast Fourier Transform Spectrometers by FPGA

    Full text link
    We have developed a digital fast Fourier transform (FFT) spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement different spectrometers in a relatively easy manner. Two types of spectrometers have been instrumented, one with 4.096 GS/s sampling speed and 2048 frequency channels and the other with 2.048 GS/s sampling speed and 32768 frequency channels. The signal processing in these spectrometers has no dead time and the accumulated spectra are recorded in external media every 8 ms. A direct sampling spectroscopy up to 8 GHz is achieved by a microwave track-and-hold circuit, which can reduce the analog receiver in front of the spectrometer. Highly stable spectroscopy with a wide dynamic range was demonstrated in a series of laboratory experiments and test observations of solar radio bursts.Comment: 20 pages, 7 figures, accepted for publication in Earth, Planets and Spac

    Delayed Onset of Experimental Autoimmune Encephalomyelitis in Olig1 Deficient Mice

    Get PDF
    BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH) transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG)-induced EAE in Olig1(-/-) mice is significantly slower than wide-type (WT) mice (19.8 ± 2.2 in Olig1(-/-) mice and 9.5 ± 0.3 days in WT mice). In addition, 10% of Olig1(-/-) mice did not develop EAE by the end of the observation periods (60 days). The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/-) mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/-) mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG). The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/-) mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS

    2種類の正常眼圧緑内障モデルマウスに対するN-アセチルシステインの網膜変性抑制効果の違い

    Get PDF
    N-acetylcysteine (NAC) is widely used as a mucolytic agent and as an antidote to paracetamol overdose. NAC serves as a precursor of cysteine and stimulates the synthesis of glutathione in neural cells. Suppressing oxidative stress in the retina may be an effective therapeutic strategy for glaucoma, a chronic neurodegenerative disease of the retinal ganglion cells (RGCs) and optic nerves. Here we examined the therapeutic potential of NAC in two mouse models of normal tension glaucoma, in which excitatory amino-acid carrier 1 (EAAC1) or glutamate/aspartate transporter (GLAST) gene was deleted. EAAC1 is expressed in retinal neurons including RGCs, whereas GLAST is mainly expressed in Müller glial cells. Intraperitoneal administration of NAC prevented RGC degeneration and visual impairment in EAAC1-deficient (knockout; KO) mice, but not in GLAST KO mice. In EAAC1 KO mice, oxidative stress and autophagy were suppressed with increased glutathione levels by NAC treatment. Our findings suggest a possibility that systemic administration of NAC may be available for some types of glaucoma patients

    Ripasudil Promotes Neuroprotection

    Get PDF
    PURPOSE. To assess if ripasudil has a neuroprotective effect using mice with excitatory amino acid carrier 1 (EAAC1) deletion (EAAC1 knockout [KO] mice), a mouse model of normal tension glaucoma. METHODS. Topical administration (5 μL/day) of two different concentrations of ripasudil (0.4% and 2%) were applied to EAAC1 KO mice from 5 to 12 weeks old. Optical coherence tomography, multifocal electroretinograms, the measurement of intraocular pressure (IOP), and histopathology analyses were performed at 5, 8, and 12 weeks old. Retrograde labeling of retinal ganglion cells (RGCs), immunoblot, and immunohistochemical analyses of phosphorylated p38 mitogen-activated protein kinase (MAPK) in the retina were performed at 8 weeks old. RESULTS. Topical ripasudil ameliorated retinal degeneration and improved visual function in EAAC1 KO mice at both 8 and 12 weeks old. Ripasudil reduced IOP and strongly suppressed the phosphorylation of p38 MAPK that stimulates RGC death in EAAC1 KO mice. CONCLUSIONS. These results suggest that, in addition to IOP reduction, ripasudil prevents glaucomatous retinal degeneration by neuroprotection, which is achieved by suppressing cell-death signaling pathways

    Advances in 5-ALA-PDD of gastric cancer

    Get PDF
    Photodynamic diagnosis based on 5-aminolevulinic acid-induced protoporphyrin IX has been clinically applied in many fields based upon its evidenced efficacy and adequate safety. In order to establish a personalized medicine approach for treating gastric cancer patients, rapid intraoperative detection of malignant lesions has become important. Feasibility of photodynamic diagnosis using 5-aminolevulinic acid for gastric cancer patients has been investigated, especially for the detection of peritoneal dissemination and lymph node metastasis. This method enables intraoperative real-time fluorescence detection of peritoneal dissemination, exhibiting higher sensitivity than white light observation without histopathological examination. The method also enables detection of metastatic foci within excised lymph nodes, exhibiting a diagnostic accuracy comparable to that of a current molecular diagnostics technique. Although several complicating issues still need to be resolved, such as the effect of tissue autofluorescence and the insufficient depth penetration of excitation light, this simple and rapid method has the potential to become a useful diagnostic tool for gastric cancer, as well as urinary bladder cancer and glioma

    Label-free Evaluation of Myocardial Infarct in Surgically Excised Ventricular Myocardium by Raman Spectroscopy

    Get PDF
    Understanding the viability of the ischemic myocardial tissue is a critical issue in determining the appropriate surgical procedure for patients with chronic heart failure after myocardial infarction (MI). Conventional MI evaluation methods are; however, preoperatively performed and/or give an indirect information of myocardial viability such as shape, color, and blood flow. In this study, we realize the evaluation of MI in patients undergoing cardiac surgery by Raman spectroscopy under label-free conditions, which is based on intrinsic molecular constituents related to myocardial viability. We identify key signatures of Raman spectra for the evaluation of myocardial viability by evaluating the infarct border zone myocardium that were excised from five patients under surgical ventricular restoration. We also obtain a prediction model to differentiate the infarcted myocardium from the non-infarcted myocardium by applying partial least squares regression-discriminant analysis (PLS-DA) to the Raman spectra. Our prediction model enables identification of the infarcted tissues and the non-infarcted tissues with sensitivities of 99.98% and 99.92%, respectively. Furthermore, the prediction model of the Raman images of the infarct border zone enabled us to visualize boundaries between these distinct regions. Our novel application of Raman spectroscopy to the human heart would be a useful means for the detection of myocardial viability during surgery

    Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent

    Get PDF
    Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host–guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA) that has α-cyclodextrin (α-CD) as a host molecule (α-CD-CTA). Prior to the polymerization of N,N-dimethylacrylamide (DMA), we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2\u27-azobis[2-(2-imidazolin-2-yl)propane dihydrochloride (VA-044) as an initiator in an aqueous solution, poly(DMA) was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol) which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol
    corecore