551 research outputs found

    Relation between fundamental estimation limit and stability in linear quantum systems with imperfect measurement

    Full text link
    From the noncommutative nature of quantum mechanics, estimation of canonical observables q^\hat{q} and p^\hat{p} is essentially restricted in its performance by the Heisenberg uncertainty relation, \mean{\Delta \hat{q}^2}\mean{\Delta \hat{p}^2}\geq \hbar^2/4. This fundamental lower-bound may become bigger when taking the structure and quality of a specific measurement apparatus into account. In this paper, we consider a particle subjected to a linear dynamics that is continuously monitored with efficiency η∈(0,1]\eta\in(0,1]. It is then clarified that the above Heisenberg uncertainty relation is replaced by \mean{\Delta \hat{q}^2}\mean{\Delta \hat{p}^2}\geq \hbar^2/4\eta if the monitored system is unstable, while there exists a stable quantum system for which the Heisenberg limit is reached.Comment: 4 page

    Metastable ferromagnetic clusters in dissipative many-body systems of polar molecules

    Full text link
    We investigate the effect of two-body loss due to chemical reactions on quantum magnetism of fermionic polar molecules in an optical lattice. We show that an interplay between dissipation and strong long-range interactions leads to formation of metastable ferromagnetic clusters. The spin states of clusters are controlled by interaction parameters and reflect the symmetry of interactions. The size of clusters strongly depends on the initial configuration of molecules due to Hilbert-space fragmentation during dissipative many-body dynamics. We construct an effective model to show the emergence of metastable states as quasi-dark states. Application to quantum simulation of the spin-SS Heisenberg model is discussed.Comment: 12 pages, 7 figure

    Feedback control of quantum entanglement in a two-spin system

    Get PDF
    A pair of spins is the most simple quantum system that can possess entanglement, a non-classical property playing an essential role in quantum information technologies. In this paper, feedback control problems of the two-spin system conditioned on a continuous measurement are considered. In order to make some useful formulas in stochastic control theory directly applicable, we first derive a two-dimensional description of the system. We then prove that a feedback controller stabilizes an entangled state of the two spins almost globally with probability one. Furthermore, it is shown that another entangled state, which corresponds to a non-equilibrium point of the dynamics, is stabilized via feedback in the sense that the expectation of the distance from the target can be made arbitrarily small

    Suboptimal quantum-error-correcting procedure based on semidefinite programming

    Get PDF
    In this paper, we consider a simplified error-correcting problem: for a fixed encoding process, to find a cascade connected quantum channel such that the worst fidelity between the input and the output becomes maximum. With the use of the one-to-one parametrization of quantum channels, a procedure finding a suboptimal error-correcting channel based on a semidefinite programming is proposed. The effectiveness of our method is verified by an example of the bit-flip channel decoding.Comment: 6 pages, no figure, Some notations differ from those in the PRA versio

    Regulation of EC-SOD in Hypoxic Adipocytes

    Get PDF

    Wobbling motion in the multi-bands crossing region

    Full text link
    The backbending in the A=180 mass region is expected to be caused by multi-bands crossing between low-K (g- and s-bands) and high-K bands. % We analyze a mechanism of coupling of these bands in terms of a dynamical treatment for nuclear rotations, i.e., the wobbling motion. The wobbling states are produced through the generator coordinate method after angular momentum projection, in which the intrinsic states are constructed through the 2d-cranked HFB calculations.Comment: 9 pages, 3 PS figures: to appear in Phys.Lett.

    SlIAA9 Controls Tomato Elongation

    Get PDF
    Tomato INDOLE-3-ACETIC ACID9 (SlIAA9) is a transcriptional repressor in auxin signal transduction, and SlIAA9 knockout tomato plants develop parthenocarpic fruits without fertilization. We generated sliaa9 mutants with parthenocarpy in several commercial tomato cultivars (Moneymaker, Rio Grande, and Ailsa Craig) using CRISPR-Cas9, and null-segregant lines in the T1 generation were isolated by self-pollination, which was confirmed by PCR and Southern blot analysis. We then estimated shoot growth phenotypes of the mutant plants under different light (low and normal) conditions. The shoot length of sliaa9 plants in Moneymaker and Rio Grande was smaller than those of wild-type cultivars in low light conditions, whereas there was not clear difference between the mutant of Ailsa Craig and the wild-type under both light conditions. Furthermore, young seedlings in Rio Grande exhibited shade avoidance response in hypocotyl growth, in which the hypocotyl lengths were increased in low light conditions, and sliaa9 mutant seedlings of Ailsa Craig exhibited enhanced responses in this phenotype. Fruit production and growth rates were similar among the sliaa9 mutant tomato cultivars. These results suggest that control mechanisms involved in the interaction of AUX/IAA9 and lights condition in elongation growth differ among commercial tomato cultivars
    • …
    corecore