15,163 research outputs found

    Single-spin magnetometry with multi-pulse sensing sequences

    Full text link
    We experimentally demonstrate single-spin magnetometry with multi-pulse sensing sequences. The use of multi-pulse sequences can greatly increase the sensing time per measurement shot, resulting in enhanced ac magnetic field sensitivity. We theoretically derive and experimentally verify the optimal number of sensing cycles, for which the effects of decoherence and increased sensing time are balanced. We perform these experiments for oscillating magnetic fields with fixed phase as well as for fields with random phase. Finally, by varying the phase and frequency of the ac magnetic field, we measure the full frequency-filtering characteristics of different multi-pulse schemes and discuss their use in magnetometry applications.Comment: 4 pages, 4 figures. Final versio

    Universal dynamical decoupling of a single solid-state spin from a spin bath

    Full text link
    Controlling the interaction of a single quantum system with its environment is a fundamental challenge in quantum science and technology. We dramatically suppress the coupling of a single spin in diamond with the surrounding spin bath by using double-axis dynamical decoupling. The coherence is preserved for arbitrary quantum states, as verified by quantum process tomography. The resulting coherence time enhancement is found to follow a general scaling with the number of decoupling pulses. No limit is observed for the decoupling action up to 136 pulses, for which the coherence time is enhanced more than 25 times compared to spin echo. These results uncover a new regime for experimental quantum science and allow to overcome a major hurdle for implementing quantum information protocols.Comment: submitted 24 May 2010; published online 9 September 201

    Bootstrap tomography of high-precision pulses for quantum control

    Full text link
    Long-time dynamical decoupling and quantum control of qubits require high-precision control pulses. Full characterization (quantum tomography) of imperfect pulses presents a bootstrap problem: tomography requires initial states of a qubit which can not be prepared without imperfect pulses. We present a protocol for pulse error analysis, specifically tailored for a wide range of the single solid-state electron spins. Using a single electron spin of a nitrogen-vacancy (NV) center in diamond, we experimentally verify the correctness of the protocol, and demonstrate its usefulness for quantum control tasks

    On the least common multiple of qq-binomial coefficients

    Full text link
    In this paper, we prove the following identity \lcm({n\brack 0}_q,{n\brack 1}_q,...,{n\brack n}_q) =\frac{\lcm([1]_q,[2]_q,...,[n+1]_q)}{[n+1]_q}, where [nk]q{n\brack k}_q denotes the qq-binomial coefficient and [n]q=1qn1q[n]_q=\frac{1-q^n}{1-q}. This result is a qq-analogue of an identity of Farhi [Amer. Math. Monthly, November (2009)].Comment: 5 page

    Noise and wake structure measurements in a subsonic tip speed fan

    Get PDF
    The results of an experimental program are reported which show the effect of blade angle, tip speed, fan pressure ratio, and thrust on noise of a model fan of 0.457m (18 inches) diameter operating at subsonic tip speeds at pressure ratios between 1.06 and 1.15. The fan used in this study had 12 blades, 7 stator vanes, and a spacing between the rotor and stator of 1.85 blade chords. This fan was originally designed for aerodynamic testing and was considered a good performer. It was used in the noise test program as it incorporated features found to reduce noise in an earlier analytical parametric study. For a given pressure ratio the fan was shown to exhibit minimum noise at the blade angle and tip speed near that of maximum aerodynamic efficiency. Also, the noise level and spectrum character of this fan showed excellent correlation with scaled data of a similar larger diameter fan. Results of the program confirm the trends shown in the earlier analytical parametric study which showed that fan noise could be reduced for a given thrust and pressure ratio by increasing fan solidity, improving fan aerodynamic design, and operating the fan at an optimum subsonic tip speed. In addition to noise, the blade wake characteristics at the leading edge of the stator were measured in this program. At root and tip sections some difference between predicted and measured wakes was found. However comparisons between predicted and measured wakes at mid span locations was found to be good

    Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond

    Full text link
    We investigate spin-dependent decay and intersystem crossing in the optical cycle of single negatively-charged nitrogen-vacancy (NV) centres in diamond. We use spin control and pulsed optical excitation to extract both the spin-resolved lifetimes of the excited states and the degree of optically-induced spin polarization. By optically exciting the centre with a series of picosecond pulses, we determine the spin-flip probabilities per optical cycle, as well as the spin-dependent probability for intersystem crossing. This information, together with the indepedently measured decay rate of singlet population provides a full description of spin dynamics in the optical cycle of NV centres. The temperature dependence of the singlet population decay rate provides information on the number of singlet states involved in the optical cycle.Comment: 11 pages, 5 figure

    Obscured clusters.IV. The most massive stars in [DBS2003]179

    Full text link
    Aims. We report new results for the massive evolved and main sequence members of the young galactic cluster DBS2003 179. We determine the physical parameters and investigate the high-mass stellar content of the cluster, as well as of its close vicinity. Methods. Our analysis is based on ISAAC/VLT moderate-resolution (R\approx4000) infrared spectroscopy of the brightest cluster members. We derive stellar parameters for sixteen of the stellar members, using full non-LTE modeling of the obtained spectra. Results. The cluster contains three late WN or WR/LBV stars (Obj 4, Obj 15, and Obj 20:MDM32) and at least 5 OIf and 5 OV stars. According to the Hertzsprung-Russell diagram for DBS2003 179, the WR stars show masses above 85Msun, the OIf stars are between 40 and 80Msun, and the main sequence O stars are >20Msun. There are indications of binarity for Obj 4 and Obj 11, and Obj 3 shows a variable spectrum. The cluster is surrounded by a continuous protostar formation region most probably triggered by DBS2003 179. Conclusions. We confirm that DBS2003 179 is young massive cluster (2.5 10^4Msun) very close to the Galactic center at the distance of 7.9+-0.8 kpc.Comment: 14 pages, 16 figures, accepted in A&

    Torsion in Buildings Subjected to Earthquakes

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/154131/1/39015094008060.pd

    Torsion in Buildings Subjected to Earthquakes

    Full text link
    National Science Foundationhttp://deepblue.lib.umich.edu/bitstream/2027.42/116059/1/39015094008060.pd

    Probing dynamics of an electron-spin ensemble via a superconducting resonator

    Get PDF
    We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic field (80-300 mT). Measurements exploit mode- and temperature-dependent coupling of hyperfine-split sub-ensembles to the resonator. Temperature-independent spin linewidth and relaxation time suggest that spin diffusion limits spin relaxation. Depolarization of one sub-ensemble by resonant pumping of another indicates fast cross-relaxation compared to spin diffusion, with implications on use of sub-ensembles as independent quantum memories.Comment: 5 pages, 5 figures, and Supplementary Information (2 figures
    corecore