69,023 research outputs found

    Reworking the Tucson-Melbourne Three-Nucleon Potential

    Get PDF
    We introduce new values of the strength constants (i.e., aa, bb, cc, and dd coefficients) of the Tucson-Melbourne (TM) 2π\pi exchange three nucleon potential. The new values come from contemporary dispersion relation analyses of meson factory π\piN scattering data. We make variational Monte Carlo calculations of the triton with the original and updated three-body forces to study the effects of this update. We remove a short-range -- π\pi-range part of the potential due to the cc coefficient and discuss the effect on the triton binding energy.Comment: 12 pages, to appear in Few-Body System

    Induced Magnetic Ordering by Proton Irradiation in Graphite

    Full text link
    We provide evidence that proton irradiation of energy 2.25 MeV on highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism. Measurements performed with a superconducting quantum interferometer device (SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering is stable at room temperature.Comment: 3 Figure

    Data-driven linear decision rule approach for distributionally robust optimization of on-line signal control

    Get PDF
    We propose a two-stage, on-line signal control strategy for dynamic networks using a linear decision rule (LDR) approach and a distributionally robust optimization (DRO) technique. The first (off-line) stage formulates a LDR that maps real-time traffic data to optimal signal control policies. A DRO problem is solved to optimize the on-line performance of the LDR in the presence of uncertainties associated with the observed traffic states and ambiguity in their underlying distribution functions. We employ a data-driven calibration of the uncertainty set, which takes into account historical traffic data. The second (on-line) stage implements a very efficient linear decision rule whose performance is guaranteed by the off-line computation. We test the proposed signal control procedure in a simulation environment that is informed by actual traffic data obtained in Glasgow, and demonstrate its full potential in on-line operation and deployability on realistic networks, as well as its effectiveness in improving traffic

    A bi-level model of dynamic traffic signal control with continuum approximation

    Get PDF
    This paper proposes a bi-level model for traffic network signal control, which is formulated as a dynamic Stackelberg game and solved as a mathematical program with equilibrium constraints (MPEC). The lower-level problem is a dynamic user equilibrium (DUE) with embedded dynamic network loading (DNL) sub-problem based on the LWR model (Lighthill and Whitham, 1955; Richards, 1956). The upper-level decision variables are (time-varying) signal green splits with the objective of minimizing network-wide travel cost. Unlike most existing literature which mainly use an on-and-off (binary) representation of the signal controls, we employ a continuum signal model recently proposed and analyzed in Han et al. (2014), which aims at describing and predicting the aggregate behavior that exists at signalized intersections without relying on distinct signal phases. Advantages of this continuum signal model include fewer integer variables, less restrictive constraints on the time steps, and higher decision resolution. It simplifies the modeling representation of large-scale urban traffic networks with the benefit of improved computational efficiency in simulation or optimization. We present, for the LWR-based DNL model that explicitly captures vehicle spillback, an in-depth study on the implementation of the continuum signal model, as its approximation accuracy depends on a number of factors and may deteriorate greatly under certain conditions. The proposed MPEC is solved on two test networks with three metaheuristic methods. Parallel computing is employed to significantly accelerate the solution procedure

    Solutions of Conformal Turbulence on a Half Plane

    Full text link
    Exact solutions of conformal turbulence restricted on a upper half plane are obtained. We show that the inertial range of homogeneous and isotropic turbulence with constant enstrophy flux develops in a distant region from the boundary. Thus in the presence of an anisotropic boundary, these exact solutions of turbulence generalize Kolmogorov's solution consistently and differ from the Polyakov's bulk case which requires a fine tunning of coefficients. The simplest solution in our case is given by the minimal model of p=2,q=33p=2, q=33 and moreover we find a fixed point of solutions when p,qp,q become large.Comment: 10pages, KHTP-93-07, SNUCTP-93-3

    Direct solar-pumped iodine laser amplifier

    Get PDF
    In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser
    • …
    corecore