3,731 research outputs found
Response Function of the Fractional Quantized Hall State on a Sphere II: Exact Diagonalization
We study the excitation spectra and the dynamical structure factor of quantum
Hall states in a finite size system through exact diagonalization. Comparison
is made between the numerical results so obtained and the analytic results
obtained from a modified RPA in the preceding companion paper. We find good
agreement between the results at low energies.Comment: 22 pages (REVTeX 3.0). 10 figures available on request. Complete
postscript file (including figures) for this paper are available on the World
Wide Web at http://cmtw.harvard.edu/~simon/ ; Preprint number HU-CMT-94S0
Robustness of high-fidelity Rydberg gates with single-site addressability
Controlled phase (CPHASE) gates can in principle be realized with trapped
neutral atoms by making use of the Rydberg blockade. Achieving the ultra-high
fidelities required for quantum computation with such Rydberg gates is however
compromised by experimental inaccuracies in pulse amplitudes and timings, as
well as by stray fields that cause fluctuations of the Rydberg levels. We
report here a comparative study of analytic and numerical pulse sequences for
the Rydberg CPHASE gate that specifically examines the robustness of the gate
fidelity with respect to such experimental perturbations. Analytical pulse
sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP)
are found to be at best moderately robust under these perturbations. In
contrast, optimal control theory is seen to allow generation of numerical
pulses that are inherently robust within a predefined tolerance window. The
resulting numerical pulse shapes display simple modulation patterns and their
spectra contain only one additional frequency beyond the basic resonant Rydberg
gate frequencies. Pulses of such low complexity should be experimentally
feasible, allowing gate fidelities of order 99.90 - 99.99% to be achievable
under realistic experimental conditions.Comment: 12 pages, 14 figure
Dynamic surface scaling behavior of isotropic Heisenberg ferromagnets
The effects of free surfaces on the dynamic critical behavior of isotropic
Heisenberg ferromagnets are studied via phenomenological scaling theory,
field-theoretic renormalization group tools, and high-precision computer
simulations. An appropriate semi-infinite extension of the stochastic model J
is constructed, the boundary terms of the associated dynamic field theory are
identified, its renormalization in d <= 6 dimensions is clarified, and the
boundary conditions it satisfies are given. Scaling laws are derived which
relate the critical indices of the dynamic and static infrared singularities of
surface quantities to familiar static bulk and surface exponents. Accurate
computer-simulation data are presented for the dynamic surface structure
factor; these are in conformity with the predicted scaling behavior and could
be checked by appropriate scattering experiments.Comment: 9 pages, 2 figure
Dynamic Nuclear Polarization in Double Quantum Dots
We theoretically investigate the controlled dynamic polarization of lattice
nuclear spins in GaAs double quantum dots containing two electrons. Three
regimes of long-term dynamics are identified, including the build up of a large
difference in the Overhauser fields across the dots, the saturation of the
nuclear polarization process associated with formation of so-called "dark
states," and the elimination of the difference field. We show that in the case
of unequal dots, build up of difference fields generally accompanies the
nuclear polarization process, whereas for nearly identical dots, build up of
difference fields competes with polarization saturation in dark states. The
elimination of the difference field does not, in general, correspond to a
stable steady state of the polarization process.Comment: 4 pages, 2 figure
Effect of n+-GaAs thickness and doping density on spin injection of GaMnAs/n+-GaAs Esaki tunnel junction
We investigated the influence of n+-GaAs thickness and doping density of
GaMnAs/n+-GaAs Esaki tunnel junction on the efficiency of the electrical
electron spin injection. We prepared seven samples of GaMnAs/n+-GaAs tunnel
junctions with different n+-GaAs thickness and doping density grown on
identical p-AlGaAs/p-GaAs/n-AlGaAs light emitting diode (LED) structures.
Electroluminescence (EL) polarization of the surface emission was measured
under the Faraday configuration with external magnetic field. All samples have
the bias dependence of the EL polarization, and higher EL polarization is
obtained in samples in which n+-GaAs is completely depleted at zero bias. The
EL polarization is found to be sensitive to the bias condition for both the
(Ga,Mn)As/n+-GaAs tunnel junction and the LED structure.Comment: 4pages, 4figures, 1table, To appear in Physica
Theory of Incompressible States in a Narrow Channel
We report on the properties of a system of interacting electrons in a narrow
channel in the quantum Hall effect regime. It is shown that an increase in the
strength of the Coulomb interaction causes abrupt changes in the width of the
charge-density profile of translationally invariant states. We derive a phase
diagram which includes many of the stable odd-denominator states as well as a
novel fractional quantum Hall state at lowest half-filled Landau level. The
collective mode evaluated at the half-filled case is strikingly similar to that
for an odd-denominator fractional quantum Hall state.Comment: 4 pages, REVTEX, and 4 .ps file
Oscillatory Tunneling between Quantum Hall Systems
Electron tunneling between quantum Hall systems on the same two dimensional
plane separated by a narrow barrier is studied. We show that in the limit where
inelastic scattering time is much longer than the tunneling time, which can be
achieved in practice, electrons can tunnel back and forth through the barrier
continously, leading to an oscillating current in the absence of external
drives. The oscillatory behavior is dictated by a tunneling gap in the energy
spectrum. We shall discuss ways to generate oscillating currents and the
phenomenon of natural ``dephasing" between the tunneling currents of edge
states. The noise spectra of these junctions are also studied. They contain
singularites reflecting the existence of tunneling gaps as well as the inherent
oscillation in the system. (Figures will be given upon requests).Comment: 20 pages, OS
Gauge-invariant critical exponents for the Ginzburg-Landau model
The critical behavior of the Ginzburg-Landau model is described in a
manifestly gauge-invariant manner. The gauge-invariant correlation-function
exponent is computed to first order in the and -expansion, and found
to agree with the ordinary exponent obtained in the covariant gauge, with the
parameter in the gauge-fixing term .Comment: 4 pages, no figure
- …