7 research outputs found

    From RFLP to DArT: molecular tools for wheat (Triticum spp.) diversity analysis

    No full text
    Wheat (Triticum spp.) is a universally lucrative agricultural crop. An increase in wheat production has been shown through selection by the farmers which can increase the grain profitability. The determination of genetic associations among domestic cultivars is facilitated by molecular markers. Data on genetic polymorphism is valuable for the germplasm association and regarding the developing management strategies. The information would be supportive for potential genome mapping programs and for the relevance of intellectual property rights of wheat breeders. Present review is an effort for providing support information to wheat breeders to develop varieties with varied genetic environment to attain continuity in large-scale wheat production. In this review, we have tried to provide a collective depiction of relevant information about the usage of some commonly used markers in wheat. It may help researchers to find out the frequentness and application of different markers and compare their results. The manuscript may serve as a platform helping the intellectuals for the selection and modification of their marker system in wheat diversity analysis. The heart of this review is the emphasis on the performance of various molecular genetic markers in diversity studies in relation to definite approaches that are in practice since several years allied with the multifaceted wheat molecular breeding and its polyploid nature

    WHEAT BIOFORTIFICATION - A POTENTIAL KEY TO HUMAN MALNUTRITION

    No full text
    Wheat production is required to double by 2050 in order to facilitate the global food assurance. Along with the rise in wheat production, improvement of the nutrient value of wheat varieties is another crucial challenge faced by wheat breeders. It is well established that more than 40% people in the world are at a risk of malnutrition caused by the deficiency of Fe, Zn and protein in their food. Numerous strategies are adopted by scientists, breeders and food industries to combat the problem. In this context, biofortificaton has become a successful method for increasing, either genetically or agronomically, the micronutrient content in crop plants. Recently, substantial progress has been made in the use of molecular marker systems and quantitative trait loci (QTL) to augment the wheat iron, zinc and protein content. Determining the role of GPC-B1 gene in controlling the iron, zinc and protein content in wheat genotypes is a promising discoveries. Although the gene is found to be associated with an elevated micronutrient content, it is also responsible for a decrease in yield. In order to simultaneously achieve both high nutrient content and elevated yield, major efforts are required to reveal the genetic control of these traits. Moreover, identifying the wheat genomic resources with an elevated nutrient content can be crucial. Employment of the next generation sequencing methods and use of molecular markers in marker assisted selection appears to be a promising approach to attaining the objective of breeding nutrient rich varieties. Combining advanced molecular biology and plant breeding techniques for wheat development is a potential strategy in achieving a healthy, 'hidden hunger' free world

    Osteogenic differentiation of MC3T3-E1 cells on different titanium surfaces

    No full text
    mRNA expressions related to osteogenic differentiation of MC3T3-E1 cells on electro-polished smooth (S), sandblasted small-grit (SSG) and sandblasted large-grit (SLG) surfaces of titanium alloys were investigated in vitro. Gene expression profiles of cells were evaluated using the RT2 Profiler PCR microarray on day 7. Mineralizing tissue-associated proteins, differentiation factors and extracellular matrix enzymes mRNA expressions were measured using Q-PCR. SLG surface upregulated 23 genes over twofolds and downregulated 3 genes when compared to the S surface. In comparison to the SSG surface, at least a twofold increase in 25 genes was observed in the SLG surface. BSP, OCN, OPN, COL I and ALP mRNA expressions increased in the SLG group when compared to the S and the SSG groups. BMP-2, BMP-6 and TGF-beta mRNA expressions increased in both the SSG and the SLG surfaces. MMP-2 and MMP-9 mRNA expressions increased as the surface roughness increased. This study demonstrated that surface roughness of titanium implants has a significant effect on cellular behavior and SLG surface apparently increased gene expressions related to osteogenesis when compared to the S and the SSG surfaces

    Periodontal ligament cell behavior on different titanium surfaces

    No full text
    Aim. The purpose of this study was to investigate proliferation, morphology, mineralization and mRNA expressions of mineralized tissue associated proteins of PDL cells on smooth (S), sandblasted small-grit (SSG), sandblasted large-grit (SLG) and sodium titanate (NaTi) coated titanium alloys, in vitro. Methods and materials: PDL cells were cultured with DMEM media containing 10% FBS on the S, SSG, SLG and NaTi titanium surfaces. PDL cell proliferation, mineralization and immunohistochemistry experiments for Bone Sialoprotein (BSP) were performed. The morphology of the PDL cells was examined using confocal and scanning electron microscopy (SEM). Gene expression profiles of cells were evaluated using a quantitative-polymerase chain reaction (Q-PCR) for type I collagen (COL I), Osteocalcin (OCN), osteopontin (OPN) and Runt-related transcription factor-2 (Runx2) on days 7 and 14. Results. Proliferation results on days 6 and 10 were similar in groups, while those of day 13 revealed a decrease in the NaTi group when compared to the S group. NaTi surface induced BSP mRNA expression which was correlated with mineralization tests and BSP immunostaining results. Increased Runx2 mRNA expression was also noted in the NaTi surface when compared to other surfaces. Conclusions. This study considers the NaTi surface as a potential alternative to SSG and SLG surfaces. This surface might provide a promising environment for PDL ligament-anchored implants

    Impacts of Nitrogen Fertilizer Application and Mulching on the Morpho-Physiological and Yield-Related Traits in Cotton

    No full text
    Cotton is a global cash crop with a significant contribution in the world economy. Optimum nutrient and water supply are most important for sustainable cotton production under warmer and dry environments. Field experiments were carried out to evaluate the cumulative impacts of various nitrogen doses and mulches on sustainable cotton production under semi-arid conditions during 2018 and 2019. Four nitrogen doses; 0, 70, 140, and 210 kg ha−1 and three types of mulch: control (without mulch), natural mulch (5 tons/ha wheat straw), and chemical mulch (methanol (30%). Nitrogen 210 kg ha−1 with natural mulching increased 40.5% gunning out turn, 30.0% fiber length, 31.7% fiber strength, 32.6% fiber fineness, 20.8% fiber uniformity, and 34.0% fiber elongation. Shoot nitrogen, phosphorous, potassium, calcium, and magnesium contents were maximum where 210 kg ha−1 nitrogen and mulch was applied. Natural mulch reduced the soil temperature as compared to chemical and no mulch conditions. The soil temperature was 0.5 to 1.8 ℃ lower in mulching treatments as compared to the control. Maximum economic yield was around 90% higher in natural mulch with the 210 kg ha−1 nitrogen application. It is concluded that optimum nitrogen application with natural mulch not only enhanced plant growth and development but also induced sustainability in quality cotton production under semi-arid conditions

    Estimation of Indian and Turkish Hexaploid Wheat Population Structure Employing Molecular Markers

    No full text
    Bread wheat (Triticum aestivum) is the most commonly grown crop due to its adaptation in a wide range of ecogeographical conditions and providing enhanced food assurance to the modern world. A diverse and rich collection is the foundation of each successful wheat improvement program. Therefore, major efforts are in progress worldwide to boost wheat production by broadening genetic diversity. Accepting this issue as a target, present study gives an overview of the major progress in the diversity and population evaluation of Indian and Turkish hexaploid wheat employing ISSR and RAPD primers. Various statistical analyses were employed for determining the hexaploid wheat population structure of India and Turkey. Results of dendrogram, scatterplots, Analysis of Molecular Variance (AMOVA) and population structure analysis were found in accordance with each other. All the experimental genotypes were clustered in two main groups, one group containing Indian varieties and another group containing both Indian and Turkish varieties reflecting the direct or indirect interbreeding among the populations of the two countries. Utilizing the genetic association of Indian and Turkish hexaploid wheat population, based on genetic distance estimated in the study, researchers worldwide may include Indian and Turkish hexaploid varieties in the wheat improvement programs and can evade the likelihood of selected germplasm becoming hereditarily consistent

    Molecular and Elemental Characterization of Selected Turkish Durum Wheat Varieties

    No full text
    Combination of elemental and protein studies along with molecular data using microsatellite markers may lead CO the better and realistic determination of relatedness between the varieties and their populations. In this study, the extent of diversity among five Turkish durum wheat cultivars and their populations has been assessed using seven microsatellite markers and the elemental analysis together with the differences in their protein content. In molecular analysis, total 23 alleles have been obtained among all the genotypes with middling of 4.6 per primer. On employing UPGMA Dendrogram, Principle Coordinate Analysis (PCoA) and Winboot analyses, both inter and inn-a varietal polymorphic studies had shown similar clustering with minor differences. As a result of AMOVA performed, the extent of diversity was found to be higher among the genotypes (76%) in comparison to the variability within the genotypes (24%). In elemental analyses, 'Selcuklu-97' was found to be the most efficient variety with high content of several elements. Also, strong and positive correlation has been observed between magnesium-phosphorus, magnesium-sulphur and sulphur-sodium, while noteworthy negative correlation has been observed between sodium and zinc. The protein content of the genotypes was found in the range of 15.17-16.90%. The diversity revealed in durum genotypes can be employed in genetic expansion of the crop. These involved varieties may aid to avoid genetic attrition coming up from the landraces. The information provided can be utilized by breeders for appropriate selection of both, generically and nutritionally efficient durum wheat varieties
    corecore