46 research outputs found

    Requirement for Dynamin during Notch Signaling inDrosophilaNeurogenesis

    Get PDF
    AbstractSingling out of a unique neural precursor from a group of equivalent cells, duringDrosophilaneurogenesis, involves Notch-mediated lateral signaling. During this process, activation of the Notch signaling pathway leads to repression of neural development. Disruption of this signaling pathway results in the development of an excess of neural cells. The loss of activity of dynamin, which is encoded by the geneshibireand is required for endocytosis, results in a similar phenotype. Here we have investigated the requirement ofshibirefunction for Notch signaling during the segregation of sensory bristles on the notum of the fly. Overexpression of different constitutively active forms of Notch inshibiremutant flies indicates thatshibirefunction is not necessary for transduction of the signal downstream of Notch, even when the receptor is integrated in the plasma membrane. However, when wild-type Notch is activated by its ligand Delta, dynamin is required in both signaling and receiving cells for normal singling out of precursors. This suggests an active role of the signaling cell for ligand-mediated receptor endocytosis in the case of transmembrane ligands. We discuss the possible implications of these results for normal functioning of Notch-mediated lateral signaling

    An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In metazoans, the hematopoietic system plays a key role both in normal development and in defense of the organism. In Drosophila, the cellular immune response involves three types of blood cells: plasmatocytes, crystal cells and lamellocytes. This last cell type is barely present in healthy larvae, but its production is strongly induced upon wasp parasitization or in mutant contexts affecting larval blood cell homeostasis. Notably, several zygotic mutations leading to melanotic mass (or "tumor") formation in larvae have been associated to the deregulated differentiation of lamellocytes. To gain further insights into the gene regulatory network and the mechanisms controlling larval blood cell homeostasis, we conducted a tissue-specific loss of function screen using hemocyte-specific Gal4 drivers and <it>UAS-dsRNA </it>transgenic lines.</p> <p>Results</p> <p>By targeting around 10% of the Drosophila genes, this <it>in vivo </it>RNA interference screen allowed us to recover 59 melanotic tumor suppressor genes. In line with previous studies, we show that melanotic tumor formation is associated with the precocious differentiation of stem-cell like blood progenitors in the larval hematopoietic organ (the lymph gland) and the spurious differentiation of lamellocytes. We also find that melanotic tumor formation can be elicited by defects either in the fat body, the embryo-derived hemocytes or the lymph gland. In addition, we provide a definitive confirmation that lymph gland is not the only source of lamellocytes as embryo-derived plasmatocytes can differentiate into lamellocytes either upon wasp infection or upon loss of function of the Friend of GATA cofactor U-shaped.</p> <p>Conclusions</p> <p>In this study, we identify 55 genes whose function had not been linked to blood cell development or function before in Drosophila. Moreover our analyses reveal an unanticipated plasticity of embryo-derived plasmatocytes, thereby shedding new light on blood cell lineage relationship, and pinpoint the Friend of GATA transcription cofactor U-shaped as a key regulator of the plasmatocyte to lamellocyte transformation.</p

    The Ly6 Protein Coiled Is Required for Septate Junction and Blood Brain Barrier Organisation in Drosophila

    Get PDF
    Background: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. Methodology/Principal Findings: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. Conclusion/Significance: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose tha

    Analyse moleculaire d'un gene intervenant dans le determinisme de l'axe dorsoventral de l'oeuf de Drosophile : fs(1)K10

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Mécanismes de régulation de l'hématopoïèse embryonnaire chez la Drosophile

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF

    Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis

    No full text
    serpent (srp) encodes a GATA transcription factor essential for haematopoiesis in Drosophila. Previously, Srp was shown to contain a single GATA zinc finger of C-terminal type. Here we show that srp encodes different isoforms, generated by alternative splicing, that contain either only a C-finger (SrpC) or both a C- and an N-finger (SrpNC). The presence of the N-finger stabilizes the interaction of Srp with palindromic GATA sites and allows interaction with the Friend of GATA factor U-shaped (Ush). We have examined the respective functions of SrpC and SrpNC during embryonic haematopoiesis. Both isoforms individually rescue blood cell formation that is lacking in an srp null mutation. Interestingly, while SrpC and SrpNC activate some genes in a similar manner, they regulate others differently. Interaction between SrpNC and Ush is responsible for some but not all aspects of the distinct activities of SrpC and SrpNC. Our results suggest that the inclusion or exclusion of the N-finger in the naturally occurring isoforms of Srp can provide an effective means of extending the versatility of srp function during development
    corecore