83 research outputs found

    Identifying Patterns of Breast Cancer Genetic Signatures using Unsupervised Machine Learning

    Get PDF
    Deploying machine learning to improve medical diagnosis is a promising area. The purpose of this study is to identify and analyze unique genetic signatures for breast cancer grades using publicly available gene expression microarray data. The classification of cancer types is based on unsupervised feature learning. Unsupervised clustering use matrix algebra based on similarity measures which made it suitable for analyzing gene expression. The main advantage of the proposed approach is the ability to use gene expression data from different grades of breast cancer to generate features that automatically identify and enhance the cancer diagnosis. In this paper, we tested different similarity measures in order to find the best way that identifies the sets of genes with a common function using expression microarray data

    Assessing the impact of silicon nanowires on bacterial transformation and viability of Escherichia coli

    Get PDF
    We investigated the biomaterial interface between the bacteria Escherichia coli DH5α and silicon nanowire patterned surfaces. We optimised the engineering of silicon nanowire coated surfaces using metal-assisted chemical etching. Using a combination of focussed ion beam scanning electron microscopy, and cell viability and transformation assays, we found that with increasing interfacing force, cell viability decreases, as a result of increasing cell rupture. However, despite this aggressive interfacing regime, a proportion of the bacterial cell population remains viable. We found that the silicon nanowires neither resulted in complete loss of cell viability nor partial membrane disruption and corresponding DNA plasmid transformation. Critically, assay choice was observed to be important, as a reduction-based metabolic reagent was found to yield false-positive results on the silicon nanowire substrate. We discuss the implications of these results for the future design and assessment of bacteria–nanostructure interfacing experiments

    Ability of a Local Bacillus cereus DS1 Isolate of Dematallization of Heavy Metals

    Get PDF
    Bacillus cereusDS1 isolate obtained from oil contaminated soil sample, has been isolated in the previous experiments. It was selected for its ability to degrade Nickel protoporphyrin disodium as a model of a heavy metal organic compound .In this research we report capability of the bacterial isolate of growing on Vanadium oxide octaethyl porphyrin with concentration of 20 mg / l as a carbon source. Result showed less efficiency to grow with existence of this substrate .Effect of other compounds used as a chloride metals was investigated .Bacterial strain exhibited a deferent pattern of growth with addition of this metals .The results shown an obvious growth inhibition in state of using Zn metal, when added Cu stimulated the growth activity. Such isolate can be interesting in improving oil quality. Keywords: bacteria, protoporphyrins, heavy metals, dematallization and crud oil

    Ability of a Local Bacillus cereus DS1 Isolate of Dematallization of Heavy Metals

    Get PDF
    Bacillus cereusDS1 isolate obtained from oil contaminated soil sample, has been isolated in the previous experiments. It was selected for its ability to degrade Nickel protoporphyrin disodium as a model of a heavy metal organic compound .In this research we report capability of the bacterial isolate of growing on Vanadium oxide octaethyl porphyrin with concentration of 20 mg / l as a carbon source. Result showed less efficiency to grow with existence of this substrate .Effect of other compounds used as a chloride metals was investigated .Bacterial strain exhibited a deferent pattern of growth with addition of this metals .The results shown an obvious growth inhibition in state of using Zn metal, when added Cu stimulated the growth activity. Such isolate can be interesting in improving oil quality. Keywords: bacteria, protoporphyrins, heavy metals, dematallization and crud oil

    Regulation of Angiotensin- Converting Enzyme 2 in Obesity: Implications for COVID-19

    Get PDF
    The ongoing COVID-19 pandemic is caused by the novel coronavirus SARS-CoV-2. Age, smoking, obesity, and chronic diseases such as cardiovascular disease and diabetes have been described as risk factors for severe complications and mortality in COVID-19. Obesity and diabetes are usually associated with dysregulated lipid synthesis and clearance, which can initiate or aggravate pulmonary inflammation and injury. It has been shown that for viral entry into the host cell, SARS-CoV-2 utilizes the angiotensin-converting enzyme 2 (ACE2) receptors present on the cells. We aimed to characterize how SARS-CoV-2 dysregulates lipid metabolism pathways in the host and the effect of dysregulated lipogenesis on the regulation of ACE2, specifically in obesity. In our study, through the re-analysis of publicly available transcriptomic data, we first found that lung epithelial cells infected with SARS-CoV-2 showed upregulation of genes associated with lipid metabolism, including the SOC3 gene, which is involved in the regulation of inflammation and inhibition of leptin signaling. This is of interest as viruses may hijack host lipid metabolism to allow the completion of their viral replication cycles. Furthermore, a dataset using a mouse model of diet-induced obesity showed a significant increase in Ace2 expression in the lungs, which negatively correlated with the expression of genes that code for sterol response element-binding proteins 1 and 2 (SREBP). Suppression of Srebp1 showed a significant increase in Ace2 expression in the lung. Moreover, ACE2 expression in human subcutaneous adipose tissue can be regulated through changes in diet. Validation of the in silico data revealed a higher expression of ACE2, TMPRSS2 and SREBP1 in vitro in lung epithelial cells from obese subjects compared to non-obese subjects. To our knowledge this is the first study to show upregulation of ACE2 and TMPRSS2 in obesity. In silico and in vitro results suggest that the dysregulated lipogenesis and the subsequently high ACE2 expression in obese patients might be the mechanism underlying the increased risk for severe complications in those patients when infected by SARS-CoV-2

    ACE2 polymorphisms impact COVID-19 severity in obese patients

    Get PDF
    A strong association between obesity and COVID-19 complications and a lack of prognostic factors that explain the unpredictable severity among these patients still exist despite the various vaccination programs. The expression of angiotensin converting enzyme 2 (ACE2), the main receptor for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is enhanced in obese individuals. The occurrence of frequent genetic single nucleotide polymorphisms (SNPs) in ACE2 is suggested to increase COVID-19 severity. Accordingly, we hypothesize that obesity-associated ACE2 polymorphisms increase the severity of COVID-19. In this study, we profiled eight frequently reported ACE2 SNPs in a cohort of lean and obese COVID-19 patients (n = 82). We highlight the significant association of rs2285666, rs2048683, rs879922, and rs4240157 with increased severity in obese COVID-19 patients as compared to lean counterparts. These co-morbid-associated SNPs tend to positively correlate, hence proposing possible functional cooperation to ACE2 regulation. In obese COVID-19 patients, rs2285666, rs879922, and rs4240157 are significantly associated with increased blood nitrogen urea and creatinine levels. In conclusion, we highlight the contribution of ACE2 SNPs in enhancing COVID-19 severity in obese individuals. The results from this study provide a basis for further investigations required to shed light on the underlying mechanisms of COVID-19 associated SNPs in COVID-19 obese patients

    Evaluation of the Total Antioxidant Capacity of Bitter and Sweet Varieties of Ferula assa-foetida and Bunium persicum

    Get PDF
    Background: Due to low information about total antioxidant capacity of three species of plants native to Ilam province which are used in the ethnobotanical knowledge of this region, This study was drafting to evaluation the antioxidant ability of bitter and sweet varieties of Ferula assa-foetida and Bunium persicum with therapeutic potential on gynecological diseases.Methods: The methanolic extracts of two different variants of F. assa-foetida and B. persicum gum-resin were prepared and then antioxidant effects were evaluated by ferric reducing-antioxidant power assay.Results: Our results showed that methanolic extracts of B. persicum gum-resin could significantly revealed antioxidant effect in comparison to two different variants of F. assa-foetida (P<0.05). While antioxidant capacity between bitter and sweet varieties of F. assa-foetida were not statistically significant.Conclusion: Our results showed that both B. persicum and the bitter and sweet varieties of F. assa-foetida native to Ilam province, located in west of Iran, could have medicinal therapeutic effects relatively through direct oxidation prevention

    Metagenomic sequencing and reverse transcriptase PCR reveal that mobile phones and environmental surfaces are reservoirs of Multidrug-Resistant superbugs and SARS-CoV-2

    Get PDF
    Background: Mobile phones of healthcare workers (HCWs) can act as fomites in the dissemination of microbes. This study was carried out to investigate microbial contamination of mobile phones of HCWs and environmental samples from the hospital unit using a combination of phenotypic and molecular methods. Methods: This point prevalence survey was carried out at the Emergency unit of a tertiary care facility. The emergency unit has two zones, a general zone for non-COVID-19 patients and a dedicated COVID-19 zone for confirmed or suspected COVID-19 patients. Swabs were obtained from the mobile phones of HCWs in both zones for bacterial culture and shotgun metagenomic analysis. Metagenomic sequencing of pooled environmental swabs was conducted. RT-PCR for SARS-CoV-2 detection was carried out. Results: Bacteria contamination on culture was detected from 33 (94.2%) mobile phones with a preponderance of Staphylococcus epidermidis (n/N = 18/35), Staphylococcus hominis (n/N = 13/35), and Staphylococcus haemolyticus (n/N = 7/35). Two methicillin-sensitive and three methicillin-resistant Staphylococcus aureus, and one pan-drug-resistant carbapenemase producer Acinetobacter baumannii were detected. Shotgun metagenomic analysis showed high signature of Pseudomonas aeruginosa in mobile phone and environmental samples with preponderance of P. aeruginosa bacteriophages. Malassezia and Aspergillus spp. were the predominant fungi detected. Fourteen mobile phones and one environmental sample harbored protists. P. aeruginosa antimicrobial resistance genes mostly encoding for efflux pump systems were detected. The P. aeruginosa virulent factor genes detected were related to motility, adherence, aggregation, and biofilms. One mobile phone from the COVID-19 zone (n/N = 1/5; 20%) had positive SARS-CoV-2 detection while all other phone and environmental samples were negative. Conclusion: The findings demonstrate that mobile phones of HCWs are fomites for potentially pathogenic and highly drug-resistant microbes. The presence of these microbes on the mobile phones and hospital environmental surfaces is a concern as it poses a risk of pathogen transfer to patients and dissemination into the community

    Bcl10 Regulates Lipopolysaccharide-Induced Pro-Fibrotic Signaling in Bronchial Fibroblasts from Severe Asthma Patients

    Get PDF
    Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. Current asthma medications have limited efficacy in treating fibrosis, particularly in patients with severe asthma, necessitating a deeper understanding of the fibrotic mechanisms. The NF-κB pathway is key to airway inflammation in asthma, as it regulates the activity of multiple pro-inflammatory mediators that contribute to airway pathology. Bcl10 is a well-known upstream mediator of the NF-κB pathway that has been linked to fibrosis in other disease models. Therefore, we investigated Bcl10-mediated NF-κB activation as a potential pathway regulating fibrotic signaling in severe asthmatic fibroblasts. We demonstrate here the elevated protein expression of Bcl10 in bronchial fibroblasts and bronchial biopsies from severe asthmatic patients when compared to non-asthmatic individuals. Lipopolysaccharide (LPS) induced the increased expression of the pro-fibrotic cytokines IL-6, IL-8 and TGF-β1 in bronchial fibroblasts, and this induction was associated with the activation of Bcl10. Inhibition of the Bcl10-mediated NF-κB pathway using an IRAK1/4 selective inhibitor abrogated the pro-fibrotic signaling induced by LPS. Thus, our study indicates that Bcl10-mediated NF-κB activation signals increased pro-fibrotic cytokine expression in severe asthmatic airways. This reveals the therapeutic potential of targeting Bcl10 signaling in ameliorating inflammation and fibrosis, particularly in severe asthmatic individuals
    • …
    corecore