3 research outputs found

    Marine Island Biogeography. Response To Comment On ‘island Biogeography: Patterns Of Marine Shallow-water Organisms’

    No full text
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)In this response we have incorporated data on gastropod and seaweed biodiversity referred to by Ávila et al. (2016, Journal of Biogeography, doi:10.1111/jbi.12816) to allow an updated analysis on marine shallow-water biogeography patterns. When compared to the biogeography patterns reported in Hachich et al. (2015, Journal of Biogeography, 42, 1871–1882), we find (1) no differences in the patterns originally reported for reef fish or seaweeds, (2) minor differences in gastropod species–area and species–age patterns and (3) a significant difference for the gastropod species-isolation pattern. In our original work, we reported that there was limited evidence that gastropod species richness was influenced by island isolation; however, our new analysis reveals a power-model relationship between these variables. Thus, we are now able to conclude that gastropod species diversity, whose dispersal capacity is intermediate between seaweeds (lowest) and reef fish (highest), is also influenced by island isolation. © 2016 John Wiley & Sons Ltd431225172519CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP, Fundação de Amparo à Pesquisa do Estado de São PauloCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Clustering Of Water Bodies In Unpolluted And Polluted Environments Based On Escherichia Coli Phylogroup Abundance Using A Simple Interaction Database

    No full text
    Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.374694701Anastasi, E.M., Matthews, B., Stratton, H.M., Katouli, M., Pathogenic Escherichia coli found in sewage treatment plants and environmental waters (2012) Appl Environ Microbiol, 78, pp. 5536-5541Araújo, M.S., Guimarães, P.R., Jr., Svanbäck, R., Pinheiro, A., Guimarães, P., Reis, S.F.D., Bolnick, D.I., Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets (2008) Ecology, 89, pp. 1981-1993Batagelj, V., Mrvar, A., Pajek - program for large network analysis (1998) Connections, 21, pp. 47-57Borgatti, S.P., Everett, M.G., Freeman, L.C., (2002) Ucinet for Windows: Software for Social Network Analysis, , Analytic Technologies, HarvardCarlos, C., Pires, M.M., Stoppe, N.C., Hachich, E.M., Sato, M.Z., Amaral, T.A.T.G., Amaral, L.A., Ottoboni, L.M.M., Escherichia coli phylogenetic group determination and application in the identification of the major animal source of fecal contamination (2010) BMC Microbiol, e161, p. 10Clermont, O., Bonacorsi, S., Bingen, E., Rapid and simple determination of the Escherichia coli phylogenetic group (2000) Appl Environ Microbiol, 66, pp. 4555-4558Clermont, O., Christensonm, J.K., Denamur, E., Gordon, D.M., The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups (2013) Environ Microbiol Rep, 5, pp. 58-65Escobar-Páramo, P., Grenet, K., Lemenac’h, A., Rode, L., Salgado, E., Amorin, C., Gouriou, S., Andremont, A., Large-scale population structure of human commensal Escherichia coli isolates (2004) Appl Environ Microbiol, 70, pp. 5698-5700Escobar-Páramo, P., Lemenac’h, A., Legall, T., Amorin, C., Gouriou, S., Picard, B., Skurnik, D., Denamur, E., Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates (2006) Environ Microbiol, 8, pp. 1975-1984Everett, M.G., Borgatti, S.P., Analyzing clique overlap (1998) Connections, 21, pp. 49-61Figueira, V., Sera, E., Manaia, C.M., Differential patterns of antimicrobial resistance in population subsets isolated from waste- and surface waters (2011) Sci Total Environ, 409, pp. 1017-1023Garcia-Vallve, S., Palau, J., Romeu, A., Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis (1999) Mol Biol Evol, 9, pp. 1125-1134Gordon, D.M., Clermont, O., Tolley, H., Denamur, E., Assigning Escherichia coli strains to phylogenetic groups: Multi-locus sequence typing vs. the PCR triplex method (2008) Environ Microbiol, 10, pp. 2484-2496Hamelin, K., Bruant, G., El-Shaarawi, A., Hill, S., Edge, T.A., Fairbrother, J., Harel, J., Brouseeau, R., Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas (2007) Appl Environ Microbiol, 73, pp. 477-484Hamilton, M.J., Hadi, A.Z., Griffith, J.F., Ishii, S., Sadowsky, M.J., Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA (2010) Water Res, 44, pp. 5463-5473Higgins, J., Hohn, C., Hornor, S., Frana, M., Denver, M., Joerger, R., Genotyping of Escherichia coli from environmental and animal samples (2007) J Microbiol Methods, 70, pp. 227-235Ishii, S., Meyer, K.P., Sadowsky, M.J., Relationship between phylogenetic groups, genotypic clusters, and virulence factors of Escherichia coli strains form diverse human and animal sources (2007) Appl Environ Microbiol, 73, pp. 5703-5710Johnson, L.A.K., Brown, M.B., Carruthers, E.A., Ferguson, J.A., Dobek, P.E., Sadowsky, M.J., Sample size, library composition, and genotypic diversity among natural populations of Escherichia coli from different animals influence accuracy of determining sources of fecal pollution (2004) Appl Environ Microbiol, 70, pp. 4478-4485Nooy, W., Mrvar, A., Batagelj, V., (2005) Exploratory Network Analysis with Pajek, p. 334. , Cambridge University Press, CambridgeOrsi, R.H., Stoppe, N.C., Sato, M.I.Z., Gomes, T.A.T., Prado, P.I., Manfio, G.P., Ottoboni, L.M.M., Genetic variability and pathogenicity potential of Escherichia coli isolated from recreational water reservoirs (2007) Res Microbiol, 158, pp. 420-427Orsi, R.H., Stoppe, N.C., Sato, M.I.Z., Prado, P.I., Ottoboni, L.M.M., Phylogenetic group distribution among Escherichia coli isolated from rivers in Sao Paulo State, Brazil (2008) World J Microbiol, 24, pp. 1573-1577Power, M.L., Littlefield-Wyer, J., Gordon, D.M., Veal, D.A., Slade, M.B., Phenotypic and genotypic characterization of encapsulated Escherichia coli isolated from blooms in two Australian lakes (2005) Environ Microbiol, 7, pp. 631-640Ratajczak, M., Laroche, E., Berthe, T., Clermont, O., Pawlak, B., Denamur, E., Petit, F., Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed (2010) BMCMicrobiol, 10, p. e222Rodrigues-Siek, K., Giddings, C.W., Doetkott, C., Johnson, T.J., Fakhr, M.K., Nolan, L.K., Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis (2005) Microbiology, 151, pp. 2097-2110Roslev, P., Bukh, A.S., State of the art molecular markers for fecal pollution source tracking in water (2011) Appl Microbiol Biotechnol, 89, pp. 1341-1355Tenallion, O., Skurnik, D., Picard, B., Denamur, E., The population genetics of commensal Escherichia coli (2010) Nat Rev Microbiol, 8, pp. 207-217Us, E.P.A., Method 1603 Escherichia coli (E. coli) in water by membrane filtration using modified membrane-thermotolerant Escherichia coli agar (modified m-TEC) (2002) EPA 821-R-02-023Microbial source tracking guide document (2005) Office of Research and Development, p. 131Walk, S.T., Alm, E.W., Calhoun, L.M., Mladonicky, J.M., Whittam, T.S., Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches (2007) Environ Microbiol, 9, pp. 2274-2288Walk, S.T., Alm, E.W., Gordon, D.M., Ram, J.L., Toranzos, G.A., Tiedje, J.M., Whittam, T.S., Cryptic lineages of the genus Escherichia (2009) Appl Environ Microbiol, 75, pp. 6534-6544Samples (2010) Standard Methods for Examination of Water and Wastewater, , http://standardmethods.org, Section 9060(2010) Microbial media and supplements, , http://www.atcc.org/CulturesandProducts/Microbiology/MicrobialMediaandSupplements/tabid/186/Default.aspx(2010) Relatório de Qualidade das Águas Superficiais no Estado de São Paulo 2009, , http://www.cetesb.sp.gov.br/publicacoes/publicacoes.asp, CETESB, São Paulo(2011) Relatório de Qualidade das Águas Superficiais no Estado de São Paulo 2010, , http://www.cetesb.sp.gov.br/publicacoes/publicacoes.asp, CETESB, São PauloOksanen, J., Multivariate analysis of ecological communities in R (2011) Vegan tutorial, , http://cc.oulu.fi/∼jarioksa/opetus/metodi/vegantutor.pdf, Version of Oct 30, 201
    corecore