41 research outputs found

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cells secretome?

    Get PDF
    Introduction: The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. Methods: In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. Results: The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Conclusions: Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications. © 2015 Teixeira et al.Portuguese Foundation for Science and Technology (FCT) (CiĂȘncia 2007 program and IF Development Grant (AJS); and pre-doctoral fellowships to FGT (SFRH/69637/ 2010) and SIA (SFRH/BD/81495/2011); Canada Research Chairs (LAB) and a SSE Postdoctoral Fellowship (KMP); The National Mass Spectrometry Network (RNEM) (REDE/1506/REM/2005); co-funded by Programa Operacional Regional do Norte (ON.2 – O Novo Norte), ao abrigo do Quadro de ReferĂȘncia EstratĂ©gico Nacional (QREN), atravĂ©s do Fundo Europeu de Desenvolvimento Regional (FEDER).info:eu-repo/semantics/publishedVersio

    Cellular and humoral sensitivity to gluten fractions in patients with treated nontropical sprue

    Full text link
    The presence of circulating antibodies and lymphocyte response to gliadin and fraction III were measured in three groups of 12 patients each. Group I consisted of patients with nontropical sprue maintained on a gluten-free diet; Group II contained patients with other gastrointestinal diseases manifesting malabsorption and Group III was composed of normal controls. Rabbits immunized to both antigens provided positive controls for each method of antibody determination. Results agree with those previously reported in that negligible antibody titers were present to either antigen in normals, patients with other forms of malabsorption or patients with nontropical sprue maintained, for some time, on a gluten-free diet. Lymphocyte stimulation failed to occur with either gluten fraction although the hyporesponsiveness to phytohemagglutinin, previously reported by others, was not observed. Further studies are needed in patients with nontropical sprue following controlled antigenic challenge. Antibody levels in jejunal fluid should also be studied. Until such studies are carried out, evaluation of immunologic factors in the pathogenesis of nontropical sprue will be incomplete.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44378/1/10620_2005_Article_BF02232292.pd

    Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis

    Full text link
    Plant stem-cell pools, the source for all organs, are first established during embryogenesis. It has been known for decades that cytokinin and auxin interact to control organ regeneration in cultured tissue. Auxin has a critical role in root stem-cell specification in zygotic embryogenesis, but the early embryonic function of cytokinin is obscure. Here, we introduce a synthetic reporter to visualize universally cytokinin output in vivo. Notably, the first embryonic signal is detected in the hypophysis, the founder cell of the root stem-cell system. Its apical daughter cell, the precursor of the quiescent centre, maintains phosphorelay activity, whereas the basal daughter cell represses signalling output. Auxin activity levels, however, exhibit the inverse profile. Furthermore, we show that auxin antagonizes cytokinin output in the basal cell lineage by direct transcriptional activation of ARABIDOPSIS RESPONSE REGULATOR genes, ARR7 and ARR15, feedback repressors of cytokinin signalling. Loss of ARR7 and ARR15 function or ectopic cytokinin signalling in the basal cell during early embryogenesis results in a defective root stem-cell system. These results provide a molecular model of transient and antagonistic interaction between auxin and cytokinin critical for specifying the first root stem-cell niche
    corecore