41 research outputs found

    Altered Trabecular Bone Structure and Delayed Cartilage Degeneration in the Knees of Collagen VI Null Mice

    Get PDF
    Mutation or loss of collagen VI has been linked to a variety of musculoskeletal abnormalities, particularly muscular dystrophies, tissue ossification and/or fibrosis, and hip osteoarthritis. However, the role of collagen VI in bone and cartilage structure and function in the knee is unknown. In this study, we examined the role of collagen VI in the morphology and physical properties of bone and cartilage in the knee joint of Col6a1−/− mice by micro-computed tomography (microCT), histology, atomic force microscopy (AFM), and scanning microphotolysis (SCAMP). Col6a1−/− mice showed significant differences in trabecular bone structure, with lower bone volume, connectivity density, trabecular number, and trabecular thickness but higher structure model index and trabecular separation compared to Col6a1+/+ mice. Subchondral bone thickness and mineral content increased significantly with age in Col6a1+/+ mice, but not in Col6a1−/− mice. Col6a1−/− mice had lower cartilage degradation scores, but developed early, severe osteophytes compared to Col6a1+/+mice. In both groups, cartilage roughness increased with age, but neither the frictional coefficient nor compressive modulus of the cartilage changed with age or genotype, as measured by AFM. Cartilage diffusivity, measured via SCAMP, varied minimally with age or genotype. The absence of type VI collagen has profound effects on knee joint structure and morphometry, yet minimal influences on the physical properties of the cartilage. Together with previous studies showing accelerated hip osteoarthritis in Col6a1−/− mice, these findings suggest different roles for collagen VI at different sites in the body, consistent with clinical data

    Adverse Fetal and Neonatal Outcomes Associated with a Life-Long High Fat Diet: Role of Altered Development of the Placental Vasculature

    Get PDF
    Maternal obesity results in a number of obstetrical and fetal complications with both immediate and long-term consequences. The increased prevalence of obesity has resulted in increasing numbers of women of reproductive age in this high-risk group. Since many of these obese women have been subjected to hypercaloric diets from early childhood we have developed a rodent model of life-long maternal obesity to more clearly understand the mechanisms that contribute to adverse pregnancy outcomes in obese women. Female Sprague Dawley rats were fed a control diet (CON - 16% of calories from fat) or high fat diet (HF - 45% of calories from fat) from 3 to 19 weeks of age. Prior to pregnancy HF-fed dams exhibited significant increases in body fat, serum leptin and triglycerides. A subset of dams was sacrificed at gestational day 15 to evaluate fetal and placental development. The remaining animals were allowed to deliver normally. HF-fed dams exhibited a more than 3-fold increase in fetal death and decreased neonatal survival. These outcomes were associated with altered vascular development in the placenta, as well as increased hypoxia in the labyrinth. We propose that the altered placental vasculature may result in reduced oxygenation of the fetal tissues contributing to premature demise and poor neonatal survival
    corecore