1,633 research outputs found

    Magnetic domain evolution in permalloy mesoscopic dots

    Get PDF
    Permalloy (Ni80Fe20) squares (30 nm thick and w mu m wide; 1 less than or equal to w less than or equal to 200 mu m) and circular disks (30 nm thick and r mu m diameter; 1 less than or equal to r less than or equal to 200 mu m) prepared on a GaAs (100) substrate were observed in both their demagnetized and remanent states by magnetic force microscopy (MFM) associated with non-contact atomic force microscopy (NC-AFM). The squares (2 less than or equal to w mu m) exhibited conventional closure domains and the corner plays a very important role in creating new walls. The circular disks, on the other hand, formed either vortex domain (5 less than or equal to r less than or equal to 20 mu m) or multi-domain (50 less than or equal to r mu m) states, The magnetization rotation is observed by MFM to change according to the size and shape of the elements, The MFM observations are supported by micromagnetic calculations which confirm the effect of the corner on the domain wall formation

    Separation of Pt(IV), Rh(III) and Fe(III) in acid chloride leach solutions of glass scraps by solvent extraction with various extractants

    Get PDF
    Solvent extraction experiments were conducted to recover pure Pt(IV) and Rh(III) from the chloride leach liquor of glass industry scraps containing a small amount of Fe(III) using Alamine 336, TOPO, TBP and Cyanex 923. The Pt(IV) and Fe(III) were selectively extracted by Cyanex 923 leaving Rh(III) in the raffinate, while only Fe(III) was extracted by TBP. The Pt(IV) in the loaded Cyanex 923 phase was first selectively stripped over Fe(III) by NaSCN and then the remaining Fe(III) was stripped by HCl solution. The Fe(III) in the loaded TBP phase was easily stripped by dilute HCl solution. The McCabe-Thiele diagrams for the extraction of Pt(IV) by Cyanex 923 and of Fe(III) by TBP were constructed. Based on the obtained results, a flowsheet for the separation of three metals from the real leaching solution of glass industry scraps was proposed

    Magnetization reversal in mesoscopic Ni80Fe20 wires: A magnetic domain launching device

    Get PDF
    The magnetization reversal process in mesoscopic permalloy (Ni80Fe20) wire structures has been investigated using scanning Kerr microscopy, magnetic force microscopy (MFM) and micromagnetic calculations. We find that the junction offers a site for reversed domain wall nucleation in the narrow part of the wires. As a consequence, the switching field is dominated by the domain nucleation field and the junction region initiates reversal by the wall motion following the nucleation of domains. Our results suggest the possibility of designing structures that can be used to “launch” reverse domains in narrow wires within a controlled field rang

    Magnetization reversal and magnetic anisotropy in Co network nanostructures

    Get PDF
    The magnetization reversal and magnetic anisotropy in Co network structures have been studied using magneto-optic Kerr effect (MOKE). An enhancement of the coercivity is observed in the network structures and is attributed to the pinning of domain walls by the hole edges in the vicinity of which the demagnetizing field spatially varies. We find that the magnetization reversal process is dominated by the intrinsic unaxial anisotropy (2K(u)/M(s)approximate to 200 Oe) in spite of the shape anisotropy induced by the hole edges. The influence of the cross-junction on the competition between the intrinsic uniaxial anisotropy and the induced shape anisotropy is discussed using micromagnetic simulations

    Switched Reluctance Motor Drives for Hybrid Electric Vehicles

    Get PDF
    Because of the ever‐increasing concerns on the energy utilization and environmental protection, the development of hybrid electric vehicles (HEVs) has become a hot research topic. As the major part of HEV technologies, the electric motor drives have to offer high efficiency, high power density, high controllability, wide‐speed operating range, and maintenance‐free operation. In particular, the switched reluctance (SR) motor drive can achieve most of these goals; therefore, this motor type has drawn much attention in the past. This chapter aims to serve as an overview of the latest developments of the SR motor drive, purposely for HEV applications. To be specific, the discussions on motor structures for torque density enhancement and torque ripple minimization are covered

    Renal tubule necrosis and apoptosis modulation by A1 adenosine receptor expression

    Get PDF
    We have shown that A1 adenosine receptors (A1ARs) are cytoprotective against renal tubular necrosis and apoptosis both in vivo and in vitro. To study the role of A1AR numbers on renal epithelial cell survival, we stably overexpressed the human A1 receptor in a porcine renal tubule cell line and utilized primary cultures of proximal tubules obtained from A1AR knockout mice. Receptor-overexpressing cells were protected against peroxide-induced necrosis and tumor necrosis factor-α/cycloheximide-induced apoptosis. Conversely, cultured proximal tubule cells from receptor knockout mice showed more necrotic and apoptotic cell loss than corresponding cells from wild-type mice. Overexpression of the receptor resulted in a significantly higher baseline expression of both total and phosphorylated heat-shock protein (HSP)27; the latter due to A1 receptor enhancement of p38 and AP2 mitogen-activated protein kinase activities. The resistance to cell death in the porcine cells was reversed by selective A1 receptor antagonism and by a selective inhibitor of HSP synthesis. Receptor activation in wild-type mice in vivo led to increased total and phosphorylated HSP27, whereas receptor knockout mice showed decreased baseline and adenosine-mediated HSP phosphorylation. These studies show that endogenous A1AR activation produces cytoprotective effects in renal proximal tubules by modulating HSP27 signaling pathways

    Single-cell genomic analysis in plants

    Get PDF
    Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis

    Professor David Minnikin Memorial Lecture:An era of the mycobacterial cell wall lipid biomarkers

    Get PDF
    This paper is dedicated to the memory of Professor David Ernest Minnikin (1939–2021). David was one of the key scientists who pioneered the field of Mycobacterium tuberculosis cell envelope research for over half a century. From the classification, identification, and extraction of the unusual lipids of the mycobacterial cell wall, to exploiting them as characteristic lipid biomarkers for sensitive detection, his ideas enlightened a whole world of possibilities within the tuberculosis (TB) field. In addition, his definition of the intricate models now forms a key milestone in our understanding of the M. tuberculosis cell envelope and has resolved many unanswered questions on the evolution of M. tuberculosis

    The Ground State Energy of Dilute Bose Gas in Potentials with Positive Scattering Length

    Full text link
    The leading term of the ground state energy/particle of a dilute gas of bosons with mass mm in the thermodynamic limit is 2π2aρ/m2\pi \hbar^2 a \rho/m when the density of the gas is ρ\rho, the interaction potential is non-negative and the scattering length aa is positive. In this paper, we generalize the upper bound part of this result to any interaction potential with positive scattering length, i.e, a>0a>0 and the lower bound part to some interaction potentials with shallow and/or narrow negative parts.Comment: Latex 28 page
    corecore