2,311 research outputs found
Exact Eigenfunctions of -Body system with Quadratic Pair Potential
We obtain all the exact eigenvalues and the corresponding eigenfunctions of
-body Bose and Fermi systems with Quadratic Pair Potentials in one
dimension. The originally existed first excited state level is missing in one
dimension, which results from the operation of symmetry or antisymmetry of
identical particles. In two and higher dimensions, we give all the eigenvalues
and the analytical ground state wave functions and the number of degeneracy.
Through the comparison with Avinash Khare's results, we have perfected his
results.Comment: 7 pages,1 figur
Approach to equilibrium for a class of random quantum models of infinite range
We consider random generalizations of a quantum model of infinite range
introduced by Emch and Radin. The generalization allows a neat extension from
the class of absolutely summable lattice potentials to the optimal class
of square summable potentials first considered by Khanin and Sinai and
generalised by van Enter and van Hemmen. The approach to equilibrium in the
case of a Gaussian distribution is proved to be faster than for a Bernoulli
distribution for both short-range and long-range lattice potentials. While
exponential decay to equilibrium is excluded in the nonrandom case, it is
proved to occur for both short and long range potentials for Gaussian
distributions, and for potentials of class in the Bernoulli case. Open
problems are discussed.Comment: 10 pages, no figures. This last version, to appear in J. Stat. Phys.,
corrects some minor errors and includes additional references and comments on
the relation to experiment
Improved antitumor response to isolated limb perfusion with tumor necrosis factor after upregulation of endothelial monocyte-activating polypeptide II in soft tissue sarcoma
BACKGROUND: Experiments with tumor necrosis factor alpha (TNF) in rodents
have shown that a high dose can lead to hemorrhagic necrosis in tumors.
Endothelial monocyte-activating polypeptide II (EMAP-II) is a novel
tumor-derived cytokine, and its expression increases the TNF-1 receptor on
tumor endothelium, enhances the induction of tissue factor on tumor
endothelial cells, and has an antiangiogenic effect. It has recently been
shown that in vivo sensitivity of tumor vasculature to TNF is determined
by tumor production of EMAP-II. METHODS: We measured the level of EMAP-II
in a TNF-resistant soft tissue sarcoma. We subsequently
stabile-transfected this cell line with a retroviral construct containing
the EMAP gene. In an extremity perfusion model in tumor-bearing rats, we
measured response rates to TNF therapy. RESULTS: Functional EMAP-II
production was increased after this transfection. Immunostaining of
paraffin-embedded tumor tissue sections in rats showed an overexpression
of human EMAP-II. Results of the TNF perfusions in rats suggest that this
tumor is more sensitive to TNF therapy. CONCLUSIONS: EMAP-II is produced
in various levels. One can increase the sensitivity of tumor for TNF
therapy in vivo by upregulating the EMAP-II production. This result leaves
an opportunity for enhanced TNF response of tumors in future settings
A geometric approach to time evolution operators of Lie quantum systems
Lie systems in Quantum Mechanics are studied from a geometric point of view.
In particular, we develop methods to obtain time evolution operators of
time-dependent Schrodinger equations of Lie type and we show how these methods
explain certain ad hoc methods used in previous papers in order to obtain exact
solutions. Finally, several instances of time-dependent quadratic Hamiltonian
are solved.Comment: Accepted for publication in the International Journal of Theoretical
Physic
Emergence of Skyrme crystal in Gross-Neveu and 't Hooft models at finite density
We study two-dimensional, large field theoretic models (Gross-Neveu
model, 't Hooft model) at finite baryon density near the chiral limit. The same
mechanism which leads to massless baryons in these models induces a breakdown
of translational invariance at any finite density. In the chiral limit baryonic
matter is characterized by a spatially varying chiral angle with a wave number
depending only on the density. For small bare quark masses a sine-Gordon kink
chain is obtained which may be regarded as simplest realization of the Skyrme
crystal for nuclear matter. Characteristic differences between confining and
non-confining models are pointed out.Comment: 27 pages, 11 figures, added reference, corrected sig
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
- …
