298 research outputs found

    Neutral-Current Atmospheric Neutrino Flux Measurement Using Neutrino-Proton Elastic Scattering in Super-Kamiokande

    Get PDF
    Recent results show that atmospheric νμ\nu_\mu oscillate with δm23×103\delta m^2 \simeq 3 \times 10^{-3} eV2^2 and sin22θatm1\sin^2{2\theta_{atm}} \simeq 1, and that conversion into νe\nu_e is strongly disfavored. The Super-Kamiokande (SK) collaboration, using a combination of three techniques, reports that their data favor νμντ\nu_\mu \to \nu_\tau over νμνsterile\nu_\mu \to \nu_{sterile}. This distinction is extremely important for both four-neutrino models and cosmology. We propose that neutrino-proton elastic scattering (ν+pν+p\nu + p \to \nu + p) in water \v{C}erenkov detectors can also distinguish between active and sterile oscillations. This was not previously recognized as a useful channel since only about 2% of struck protons are above the \v{C}erenkov threshold. Nevertheless, in the present SK data there should be about 40 identifiable events. We show that these events have unique particle identification characteristics, point in the direction of the incoming neutrinos, and correspond to a narrow range of neutrino energies (1-3 GeV, oscillating near the horizon). This channel will be particularly important in Hyper-Kamiokande, with 40\sim 40 times higher rate. Our results have other important applications. First, for a similarly small fraction of atmospheric neutrino quasielastic events, the proton is relativistic. This uniquely selects νμ\nu_\mu (not νˉμ\bar{\nu}_\mu) events, useful for understanding matter effects, and allows determination of the neutrino energy and direction, useful for the L/EL/E dependence of oscillations. Second, using accelerator neutrinos, both elastic and quasielastic events with relativistic protons can be seen in the K2K 1-kton near detector and MiniBooNE.Comment: 10 pages RevTeX, 8 figure

    A general analysis with trilinear and bilinear R-parity violating couplings in the light of recent SNO data

    Full text link
    We analyse an extension of the minimal supersymmetric standard model including the dominant trilinear and bilinear R-parity violating contributions. We take the trilinear terms from the superpotential and the bilinear terms from the superpotential as well as the scalar potential. We compute the neutrino masses induced by those couplings and determine the allowed ranges of the R-parity violating parameters that are consistent with the latest SNO results, atmospheric data and the Chooz constraint. We also estimate the effective mass for neutrinoless double beta decay in such scenarios.Comment: 7 pages, Revtex, 1 PS figur

    Fragmentation Function and Hadronic Production of the Heavy Supersymmetric Hadrons

    Full text link
    The light top-squark \sto may be the lightest squark and its lifetime may be `long enough' in a kind of SUSY models which have not been ruled out yet experimentally, so colorless `supersymmetric hadrons (superhadrons)' (\sto \bar{q}) (qq is a quark except tt-quark) may be formed as long as the light top-squark \sto can be produced. Fragmentation function of \sto to heavy `supersymmetric hadrons (superhadrons)' (\sto \bar{Q}) (Qˉ=cˉ\bar{Q}=\bar{c} or bˉ\bar{b}) and the hadronic production of the superhadrons are investigated quantitatively. The fragmentation function is calculated precisely. Due to the difference in spin of the SUSY component, the asymptotic behavior of the fragmentation function is different from those of the existent ones. The fragmentation function is also applied to compute the production of heavy superhadrons at hadronic colliders Tevatron and LHC under the so-called fragmentation approach. The resultant cross-section for the heavy superhadrons is too small to observe at Tevatron, but great enough at LHC, even when all the relevant parameters in the SUSY models are taken within the favored region for the heavy superhadrons. The production of `light superhadrons' (\sto \bar{q}) (q=u,d,sq=u, d, s) is also roughly estimated. It is pointed out that the production cross-sections of the light superhadrons (\sto \bar{q}) may be much greater than those of the heavy superhadrons, so that even at Tevatron the light superhadrons may be produced in great quantities.Comment: 20 pages, 9 figure

    Relic Neutralino Densities and Detection Rates with Nonuniversal Gaugino Masses

    Full text link
    We extend previous analyses on the interplay between nonuniversalities in the gaugino mass sector and the thermal relic densities of LSP neutralinos, in particular to the case of moderate to large tan beta. We introduce a set of parameters that generalizes the standard unified scenario to cover the complete allowed parameter space in the gaugino mass sector. We discuss the physical significance of the cosmologically preferred degree of degeneracy between charginos and the LSP and study the effect this degree of degeneracy has on the prospects for direct detection of relic neutralinos in the next round of dark matter detection experiments. Lastly, we compare the fine tuning required to achieve a satisfactory relic density with the case of universal gaugino masses, as in minimal supergravity, and find it to be of a similar magnitude. The sensitivity of quantifiable measures of fine-tuning on such factors as the gluino mass and top and bottom masses is also examined.Comment: Uses RevTeX; 14 pages, 16 figure

    Slepton and Neutralino/Chargino Coannihilations in MSSM

    Get PDF
    Within the low-energy effective Minimal Supersymmetric extension of Standard Model (effMSSM) we calculated the neutralino relic density taking into account slepton-neutralino and neutralino-chargino/neutralino coannihilation channels. We performed comparative study of these channels and obtained that both of them give sizable contributions to the reduction of the relic density. Due to these coannihilation processes some models (mostly with large neutralino masses) enter into the cosmologically interesting region for relic density, but other models leave this region. Nevertheless, in general, the predictions for direct and indirect dark matter detection rates are not strongly affected by these coannihilation channels in the effMSSM.Comment: 12 pages, 9 figures, revte

    Status of a Supersymmetric Flavour Violating Solution to the Solar Neutrino Puzzle with Three Generations

    Full text link
    We present a general study of a three neutrino flavour transition model based on the supersymmetric interactions which violate R-parity. These interactions induce flavour violating scattering reactions between solar matter and neutrinos. The model does not contain any vacuum mass or mixing angle for the first generation neutrino. Instead, the effective mixing in the first generation is induced via the new interactions. The model provides a natural interpretation of the atmospheric neutrino anomaly, and is consistent with reactor experiments. We determine all R-parity violating couplings which can contribute to the effective neutrino oscillations, and summarize the present laboratory bounds. Independent of the specific nature of the (supersymmetric) flavour violating model, the experimental data on the solar neutrino rates and the recoil electron energy spectrum are inconsistent with the theoretical predictions. The confidence level of the χ2\chi^2-analysis ranges between 104\sim 10^{-4} and 103\sim 10^{-3}. The incompatibility, is due to the new SNO results, and excludes the present model. We conclude that a non-vanishing vacuum mixing angle for the first generation neutrino is necessary in our model. We expect this also to apply to the solutions based on other flavour violating interactions having constraints of the same order of magnitude.Comment: 17 pages, Latex fil

    Probing R-parity violating models of neutrino mass at the Tevatron via top Squark decays

    Full text link
    We have estimated the limiting branching ratio of the R-parity violating (RPV) decay of the lighter top squark, \tilde t_1 \ar l^+ d (l=el=e or μ\mu and d is a down type quark of any flavor), as a function of top squark mass(\MST) for an observable signal in the di-lepton plus di-jet channel at the Tevatron RUN-II experiment with 2 fb1^{-1} luminosity. Our simulations indicate that the lepton number violating nature of the underlying decay dynamics can be confirmed via the reconstruction of \MST. The above decay is interesting in the context of RPV models of neutrino mass where the RPV couplings (λi3j\lambda'_{i3j}) driving the above decay are constrained to be small (\lsim 10^{-3} - 10^{-4} ). If t~1\tilde t_1 is the next lightest super particle - a theoretically well motivated scenario - then the RPV decay can naturally compete with the R-parity conserving (RPC) modes which also have suppressed widths. The model independent limiting BR can delineate the parameter space in specific supersymmetric models, where the dominating RPV decay is observable and predict the minimum magnitude of the RPV coupling that will be sensitive to Run-II data. We have found it to be in the same ballpark value required by models of neutrino mass, for a wide range of \MST. A comprehensive future strategy for linking top squark decays with models of neutrino mass is sketched.Comment: 28 pages, 14 Figure

    Squark-, Slepton- and Neutralino-Chargino coannihilation effects in the low-energy effective MSSM

    Get PDF
    Within the low-energy effective Minimal Supersymmetric extension of the Standard Model (effMSSM) we calculate the neutralino relic density taking into account slepton-neutralino, squark-neutralino and neutralino/chargino- neutralino coannihilation channels. By including squark (stop and sbottom) coannihilation channels we extend our comparative study to all allowed coannihilations and obtain the general result that all of them give sizable contributions to the reduction of the neutralino relic density. Due to these coannihilation processes some models (mostly with large neutralino masses) enter into the cosmologically interesting region for relic density, but other models leave this region. Nevertheless, in general, the predictions for direct and indirect dark matter detection rates are not strongly affected by these coannihilation channels in the effMSSM.Comment: 14 pages, 10 figures, corrected and to be published in Phys. Rev.

    Top-squark searches at the Tevatron in models of low-energy supersymmetry breaking

    Get PDF
    We study the production and decays of top squarks (stops) at the Tevatron collider in models of low-energy supersymmetry breaking. We consider the case where the lightest Standard Model (SM) superpartner is a light neutralino that predominantly decays into a photon and a light gravitino. Considering the lighter stop to be the next-to-lightest Standard Model superpartner, we analyze stop signatures associated with jets, photons and missing energy, which lead to signals naturally larger than the associated SM backgrounds. We consider both 2-body and 3-body decays of the top squarks and show that the reach of the Tevatron can be significantly larger than that expected within either the standard supergravity models or models of low-energy supersymmetry breaking in which the stop is the lightest SM superpartner. For a modest projection of the final Tevatron luminosity, L = 4 fb-1, stop masses of order 300 GeV are accessible at the Tevatron collider in both 2-body and 3-body decay modes. We also consider the production and decay of ten degenerate squarks that are the supersymmetric partners of the five light quarks. In this case we find that common squark masses up to 360 GeV are easily accessible at the Tevatron collider, and that the reach increases further if the gluino is light.Comment: 32 pages, 9 figures; references adde

    Dark Matter, Light Stops and Electroweak Baryogenesis

    Full text link
    We examine the neutralino relic density in the presence of a light top squark, such as the one required for the realization of the electroweak baryogenesis mechanism, within the minimal supersymmetric standard model. We show that there are three clearly distinguishable regions of parameter space, where the relic density is consistent with WMAP and other cosmological data. These regions are characterized by annihilation cross sections mediated by either light Higgs bosons, Z bosons, or by the co-annihilation with the lightest stop. Tevatron collider experiments can test the presence of the light stop in most of the parameter space. In the co-annihilation region, however, the mass difference between the light stop and the lightest neutralino varies between 15 and 30 GeV, presenting an interesting challenge for stop searches at hadron colliders. We present the prospects for direct detection of dark matter, which provides a complementary way of testing this scenario. We also derive the required structure of the high energy soft supersymmetry breaking mass parameters where the neutralino is a dark matter candidate and the stop spectrum is consistent with electroweak baryogenesis and the present bounds on the lightest Higgs mass.Comment: 24 pages, 8 figures; version published in Phys.Rev.
    corecore