11 research outputs found

    無題

    No full text
    再度、下水溝の改良を要

    Circular spectropolarimetric sensing of higher plant and algal chloroplast structural variations

    No full text
    Photosynthetic eukaryotes show a remarkable variability in photosynthesis, including large differences in light-harvesting proteins and pigment composition. In vivo circular spectropolarimetry enables us to probe the molecular architecture of photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological and structural information. In the present study, we have measured the circular polarizance of several multicellular green, red, and brown algae and higher plants, which show large variations in circular spectropolarimetric signals with differences in both spectral shape and magnitude. Many of the algae display spectral characteristics not previously reported, indicating a larger variation in molecular organization than previously assumed. As the strengths of these signals vary by three orders of magnitude, these results also have important implications in terms of detectability for the use of circular polarization as a signature of life

    Circular spectropolarimetric sensing of higher plant and algal chloroplast structural variations

    No full text
    Photosynthetic eukaryotes show a remarkable variability in photosynthesis, including large differences in light-harvesting proteins and pigment composition. In vivo circular spectropolarimetry enables us to probe the molecular architecture of photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological and structural information. In the present study, we have measured the circular polarizance of several multicellular green, red, and brown algae and higher plants, which show large variations in circular spectropolarimetric signals with differences in both spectral shape and magnitude. Many of the algae display spectral characteristics not previously reported, indicating a larger variation in molecular organization than previously assumed. As the strengths of these signals vary by three orders of magnitude, these results also have important implications in terms of detectability for the use of circular polarization as a signature of life

    Design of the life signature detection polarimeter LSDpol

    No full text
    Many biologically produced chiral molecules such as amino acids and sugars show a preference for left or right handedness (homochirality). Light reflected by biological materials such as algae and leaves therefore exhibits a small amount of circular polarization that strongly depends on wavelength. Our Life Signature Detection polarimeter (LSDpol) is optimized to measure these signatures of life. LSDpol is a compact spectropolarimeter concept with no moving parts that instantaneously measures linear and circular polarization averaged over the field of view with a sensitivity of better than 10-4. We expect to launch the instrument into orbit after validating its performance on the ground and from aircraft. LSDpol is based on a spatially varying quarter-wave retarder that is implemented with a patterned liquid-crystal. It is the first optical element to maximize the polarimetric sensitivity. Since this pattern as well as the entrance slit of the spectrograph have to be imaged onto the detector, the slit serves as the aperture, and an internal field stop limits the field of view. The retarder's fast axis angle varies linearly along one spatial dimension. A fixed quarter-wave retarder combined with a polarization grating act as the disperser and the polarizing beam-splitter. Circular and linear polarization are thereby encoded at incompatible modulation frequencies across the spectrum, which minimizes the potential cross-talk from linear into circular polarization.</p

    Spectropolarimetry of life: Airborne measurements from a hot air balloon

    No full text
    Does life exist outside our Solar System A first step towards searching for life outside our Solar System is detecting life on Earth by using remote sensing applications. One powerful and unambiguous biosignature is the circular polarization resulting from the homochirality of biotic molecules and systems. We aim to investigate the possibility of identifying and characterizing life on Earth by using airborne spectropolarimetric observations from a hot air balloon during our field campaign in Switzerland, May 2022. In this proceeding we present the optical-setup and the data obtained from aerial circular spectropolarimetric measurements of farmland, forests, lakes and urban sites. We make use of the well-calibrated FlyPol instrument that measures the fractionally induced circular polarization (V/I) of (reflected) light with a sensitivity of &lt; 10-4. The instrument operates in the visible spectrum, ranging from 400 to 900 nm. We demonstrate the possibility to distinguish biotic from abiotic features using circular polarization spectra and additional broadband linear polarization information. We review the performance of our optical-setup and discuss potential improvements. This sets the requirements on how to perform future airborne spectropolarimetric measurements of the Earth's surface features from several elevations. Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Astrodynamics & Space Mission

    Design of the life signature detection polarimeter LSDpol

    No full text
    Many biologically produced chiral molecules such as amino acids and sugars show a preference for left or right handedness (homochirality). Light reflected by biological materials such as algae and leaves therefore exhibits a small amount of circular polarization that strongly depends on wavelength. Our Life Signature Detection polarimeter (LSDpol) is optimized to measure these signatures of life. LSDpol is a compact spectropolarimeter concept with no moving parts that instantaneously measures linear and circular polarization averaged over the field of view with a sensitivity of better than 10-4. We expect to launch the instrument into orbit after validating its performance on the ground and from aircraft. LSDpol is based on a spatially varying quarter-wave retarder that is implemented with a patterned liquid-crystal. It is the first optical element to maximize the polarimetric sensitivity. Since this pattern as well as the entrance slit of the spectrograph have to be imaged onto the detector, the slit serves as the aperture, and an internal field stop limits the field of view. The retarder's fast axis angle varies linearly along one spatial dimension. A fixed quarter-wave retarder combined with a polarization grating act as the disperser and the polarizing beam-splitter. Circular and linear polarization are thereby encoded at incompatible modulation frequencies across the spectrum, which minimizes the potential cross-talk from linear into circular polarization.Astrodynamics & Space Mission

    Biosignatures of the Earth: I. Airborne spectropolarimetric detection of photosynthetic life

    No full text
    Context. Homochirality is a generic and unique property of life on Earth and is considered a universal and agnostic biosignature. Homochirality induces fractional circular polarization in the incident light that it reflects. Because this circularly polarized light can be sensed remotely, it can be one of the most compelling candidate biosignatures in life detection missions. While there are also other sources of circular polarization, these result in spectrally flat signals with lower magnitude. Additionally, circular polarization can be a valuable tool in Earth remote sensing because the circular polarization signal directly relates to vegetation physiology. Aims. While high-quality circular polarization measurements can be obtained in the laboratory and under semi-static conditions in the field, there has been a significant gap to more realistic remote sensing conditions. Methods. In this study, we present sensitive circular spectropolarimetric measurements of various landscape elements taken from a fast-moving helicopter. Results. We demonstrate that during flight, within mere seconds of measurements, we can differentiate (S∕ N &gt; 5) between grass fields, forests, and abiotic urban areas. Importantly, we show that with only nonzero circular polarization as a discriminant, photosynthetic organisms can even be measured in lakes. Conclusions. Circular spectropolarimetry can be a powerful technique to detect life beyond Earth, and we emphasize the potential of utilizing circular spectropolarimetry as a remote sensing tool to characterize and monitor in detail the vegetation physiology and terrain features of Earth itself. QN/Fysics of NanoElectronicsAstrodynamics & Space Mission
    corecore