18 research outputs found

    Effects of red grape, wild grape and black raspberry wines on ground pork during refrigerated storage

    Get PDF
    The effects of red grape, wild grape and black raspberry wines on the quality of ground pork during a 15 days refrigerated storage period were investigated. The levels of phenolic compounds were the highest in black raspberry wine (P0.05). The addition of 5% and 10% wine influenced the quality of ground pork by decreasing pH, inhibiting the progression of lipid oxidation and the formation of total volatile basic nitrogen (TVB-N), and stabilizing the red colour of the ground pork compared to control samples to which no wine was added. In ground pork, addition of red grape wine led to lower concentrations of thiobarbituric acid reactive substances (TBARS, 0.19–0.39 mg kg−1) and TVB-N values (69.1–119.9 mg kg−1) than wild grape (0.16–0.43 mg kg−1 and 72.0–194.1 mg kg−1, respectively) or black raspberry wine (0.33–0.58 mg kg−1 and 81.7–225.4 mg kg−1, respectively) up to 10 days of storage. Results from the present study suggested that the quality of ground pork was affected by wine type and storage period. These effects could be due to phenolic compounds as well as other chemical components of the wines

    High-Frequency Ultrasound Imaging for Examination of Early Dental Caries

    No full text
    The extent of dental tissue destruction during the treatment of white spot lesions (WSLs) increases with the severity of the lesion. If the depth and shape of WSLs can be predicted with a noninvasive diagnostic method before dental caries treatment, more conservative interventions can be planned. Given the superiority of high-frequency ultrasound (HFUS) imaging in observing the internal structures of the body, the present study aimed to verify the possibility of HFUS imaging to examine the depth and shape of WSLs. We prepared tooth samples and developed a biomicroscopic system with a HFUS transducer to obtain images of normal and WSL regions. HFUS images were compared with conventional ultrasound images and micro–computed tomography images. HFUS distinctly differentiated demineralization within WSL and normal regions. WSL depth calculated in the micro–computed tomography image was similar to that in HFUS. This study revealed that HFUS imaging has the potential to detect early dental caries and offer information on the invasion depth of early dental caries quantitatively. © International & American Associations for Dental Research 2018.1
    corecore