744 research outputs found

    Novel criticality in a model with absorbing states

    Full text link
    We study a one-dimensional model which undergoes a transition between an active and an absorbing phase. Monte Carlo simulations supported by some additional arguments prompted as to predict the exact location of the critical point and critical exponents in this model. The exponents ÎŽ=0.5\delta=0.5 and z=2z=2 follows from random-walk-type arguments. The exponents ÎČ=Μ⊄\beta = \nu_{\perp} are found to be non-universal and encoded in the singular part of reactivation probability, as recently discussed by H. Hinrichsen (cond-mat/0008179). A related model with quenched randomness is also studied.Comment: 5 pages, 5 figures, generalized version with the continuously changing exponent bet

    Dynamics-dependent criticality in models with q absorbing states

    Full text link
    We study a one-dimensional, nonequilibrium Potts-like model which has qq symmetric absorbing states. For q=2q=2, as expected, the model belongs to the parity conserving universality class. For q=3q=3 the critical behaviour depends on the dynamics of the model. Under a certain dynamics it remains generically in the active phase, which is also the feature of some other models with three absorbing states. However, a modified dynamics induces a parity conserving phase transition. Relations with branching-annihilating random walk models are discussed in order to explain such a behaviour.Comment: 5 pages, 5 eps figures included, Phys.Rev.E (accepted

    Logarithmic Corrections in Dynamic Isotropic Percolation

    Full text link
    Based on the field theoretic formulation of the general epidemic process we study logarithmic corrections to scaling in dynamic isotropic percolation at the upper critical dimension d=6. Employing renormalization group methods we determine these corrections for some of the most interesting time dependent observables in dynamic percolation at the critical point up to and including the next to leading correction. For clusters emanating from a local seed at the origin we calculate the number of active sites, the survival probability as well as the radius of gyration.Comment: 9 pages, 3 figures, version to appear in Phys. Rev.

    Scaling behavior of the conserved transfer threshold process

    Full text link
    We analyze numerically the critical behavior of an absorbing phase transition in the conserved transfer threshold process. We determined the steady state scaling behavior of the order parameter as a function of both, the control parameter and an external field, conjugated to the order parameter. The external field is realized as a spontaneous creation of active particles which drives the system away from criticality. The obtained results yields that the conserved transfers threshold process belongs to the universality class of absorbing phase transitions in a conserved field.Comment: 6 pages, 8 figures, accepted for publication in Phys. Rev.

    Branching and annihilating Levy flights

    Full text link
    We consider a system of particles undergoing the branching and annihilating reactions A -> (m+1)A and A + A -> 0, with m even. The particles move via long-range Levy flights, where the probability of moving a distance r decays as r^{-d-sigma}. We analyze this system of branching and annihilating Levy flights (BALF) using field theoretic renormalization group techniques close to the upper critical dimension d_c=sigma, with sigma<2. These results are then compared with Monte-Carlo simulations in d=1. For sigma close to unity in d=1, the critical point for the transition from an absorbing to an active phase occurs at zero branching. However, for sigma bigger than about 3/2 in d=1, the critical branching rate moves smoothly away from zero with increasing sigma, and the transition lies in a different universality class, inaccessible to controlled perturbative expansions. We measure the exponents in both universality classes and examine their behavior as a function of sigma.Comment: 9 pages, 4 figure

    Epidemic processes with immunization

    Full text link
    We study a model of directed percolation (DP) with immunization, i.e. with different probabilities for the first infection and subsequent infections. The immunization effect leads to an additional non-Markovian term in the corresponding field theoretical action. We consider immunization as a small perturbation around the DP fixed point in d<6, where the non-Markovian term is relevant. The immunization causes the system to be driven away from the neighbourhood of the DP critical point. In order to investigate the dynamical critical behaviour of the model, we consider the limits of low and high first infection rate, while the second infection rate remains constant at the DP critical value. Scaling arguments are applied to obtain an expression for the survival probability in both limits. The corresponding exponents are written in terms of the critical exponents for ordinary DP and DP with a wall. We find that the survival probability does not obey a power law behaviour, decaying instead as a stretched exponential in the low first infection probability limit and to a constant in the high first infection probability limit. The theoretical predictions are confirmed by optimized numerical simulations in 1+1 dimensions.Comment: 12 pages, 11 figures. v.2: minor correction

    Faithful remote state preparation using finite classical bits and a non-maximally entangled state

    Full text link
    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state.Comment: 6 page

    On the adiabatic behaviour for a Wigner-Weisskopf atom (Spectral and Scattering Theory and Related Topics)

    Get PDF
    In this research announcement we present some recent results of the authors on the adiabatic theorem for a system without a spectral gap [4]

    Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system

    Get PDF
    Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1–4) that are formed by a single cell. This is regulated by the concentration of three structural meiotic SPB components, which is dependent on available amounts of carbon source. Using experiments and computer simulation, we show that the molecular mechanism relies on a self-organizing system, which is able to generate particular patterns (different numbers of spores) in dependency on one single stimulus (gradually increasing amounts of SPB constituents). We also show that SNC enhances intratetrad mating, whereby maximal amounts of germinated spores are able to return to a diploid lifestyle without intermediary mitotic division. This is beneficial for the immediate fitness of the population of postmeiotic cells
    • 

    corecore