5 research outputs found

    Bacteriophage Therapy for the Prevention and Treatment of Fracture-Related Infection Caused by Staphylococcus aureus: A Preclinical Study

    Get PDF
    Although several studies have shown promising clinical outcomes of phage therapy in patients with orthopedic device-related infections, questions remain regarding the optimal application protocol, systemic effects, and the impact of the immune response. This study provides a proof-of-concept of phage therapy in a clinically relevant rabbit model of fracture-related infection (FRI) caused by Staphylococcus aureus. In a prevention setting, phage in saline (without any biomaterial-based carrier) was highly effective in the prevention of FRI, compared to systemic antibiotic prophylaxis alone. In the subsequent study involving treatment of established infection, daily administration of phage in saline through a subcutaneous access tube was compared to a single intraoperative application of a phage-loaded hydrogel and a control group receiving antibiotics only. In this setting, although a possible trend of bacterial load reduction on the implant was observed with the phage-loaded hydrogel, no superior effect of phage therapy was found compared to antibiotic treatment alone. The application of phage in saline through a subcutaneous access tube was, however, complicated by superinfection and the development of neutralizing antibodies. The latter was not found in the animals that received the phage-loaded hydrogel, which may indicate that encapsulation of phages into a carrier such as a hydrogel limits their exposure to the adaptive immune system. These studies show phage therapy can be useful in targeting orthopedic device-related infection, however, further research and improvements of these application methods are required for this complex clinical setting

    Species richness effects on grassland recovery from drought depend on community productivity in a multisite experiment

    No full text
    Biodiversity can buffer ecosystem functioning against extreme climatic events, but few experiments have explicitly tested this. Here, we present the first multisite biodiversity × drought manipulation experiment to examine drought resistance and recovery at five temperate and Mediterranean grassland sites. Aboveground biomass production declined by 30% due to experimental drought (standardised local extremity by rainfall exclusion for 72–98 consecutive days). Species richness did not affect resistance but promoted recovery. Recovery was only positively affected by species richness in low-productive communities, with most diverse communities even showing overcompensation. This positive diversity effect could be linked to asynchrony of species responses. Our results suggest that a more context-dependent view considering the nature of the climatic disturbance as well as the productivity of the studied system will help identify under which circumstances biodiversity promotes drought resistance or recovery. Stability of biomass production can generally be expected to decrease with biodiversity loss and climate change. © 2017 John Wiley & Sons Ltd/CNR

    Genetics of microphthalmos

    No full text
    corecore