343 research outputs found

    High performance Beowulf computer for lattice QCD

    Get PDF
    We describe the construction of a high performance parallel computer composed of PC components, as well as the performance test in lattice QCD.Comment: Lattice 2001 (Algorithms and Machines) 3 page

    Thermoelectrics Near the Mott Localization-Delocalization Transition

    Full text link
    We give an overview on current status of the theoretical research on Thermoelectricity for correlated materials. We derive the theoretical formulas which become exact at low and high temperature and discuss the intermediate temperature results. In particular, we show that within Dynamical Mean Field Theory the low temperature sign of the thermopower is not necessary the same as in LDA, and that significant non-universality is expected due to strong correlations.Comment: appeared in "Properties and Applications of Thermoelectric Materials", Edited by V. Zlatic and A.C. Hewson, Springe

    Substitutional doping of Cu in diamond: Mott physics with pp orbitals

    Full text link
    Discovery of superconductivity in the impurity band formed by heavy doping of boron into diamond (C:B) as well as doping of boron into silicon (Si:B) has provided a rout for the possibility of new families of superconducting materials. Motivated by the special role played by copper atoms in high temperature superconducting materials where essentially Cu dd orbitals are responsible for a variety of correlation induced phases, in this paper we investigate the effect of substitutional doping of Cu into diamond. Our extensive first principle calculations averaged over various geometries based on density functional theory, indicates the formation of a mid-gap band, which mainly arises from the t2gt_{2g} and 4p4p states of Cu. For impurity concentrations of more than 1\sim 1%, the effect of 2pbandsofneighboringcarbonatomscanbeignored.Basedonourdetailedanalysis,wesuggestatwobandmodelforthemidgapstatesconsistingofaquarterfilledholelike bands of neighboring carbon atoms can be ignored. Based on our detailed analysis, we suggest a two band model for the mid-gap states consisting of a quarter-filled hole like t_{2g}band,andahalffilledbandof band, and a half-filled band of 4pstates.IncreasingtheconcentrationoftheCuimpuritybeyond states. Increasing the concentration of the Cu impurity beyond \sim 5%, completely closes the spectral gap of the host diamond.Comment: 5 figure

    Long-distant contribution and χc1\chi_{c1} radiative decays to light vector meson

    Full text link
    The discrepancy between the PQCD calculation and the CLEO data for χc1γV\chi_{c1}\to \gamma V (V=ρ0,ω,ϕV=\rho^0,\,\omega,\,\phi) stimulates our interest in exploring extra mechanism of χc1\chi_{c1} decay. In this work, we apply an important non-perturbative QCD effect, i.e., hadronic loop mechanism, to study χc1γV\chi_{c1}\to \gamma V radiative decay. Our numerical result shows that the theoretical results including the hadronic loop contribution and the PQCD calculation of χc1γV\chi_{c1}\to \gamma V are consistent with the corresponding CLEO data of χc1γV\chi_{c1}\to \gamma V. We expect further experimental measurement of χc1γV\chi_{c1}\to \gamma V at BES-III, which will be helpful to test the hadronic loop effect on χc1\chi_{c1} decay.Comment: 7 pages, 2 figures. Accepted for publication in Eur. Phys. J.

    Reduction of quartz to silicon monoxide by methane-hydrogen mixtures

    Get PDF
    The reduction of quartz was studied isothermally in a fluidized bed reactor using continuously flowing methane-hydrogen gas mixture in the temperature range from 1623 K to 1773 K (1350 °C to 1500 °C). The CO content in the off-gas was measured online using an infrared gas analyzer. The main phases of the reduced samples identified by XRD analysis were quartz and cristobalite. Significant weight loss in the reduction process indicated that the reduction products were SiO and CO. Reduction of SiO2 to SiO by methane starts with adsorption and dissociation of CH4 on the silica surface. The high carbon activity in the CH4-H2 gas mixture provided a strongly reducing condition. At 1623 K (1350 °C), the reduction was very slow. The rate and extent of reduction increased with the increasing temperature to 1723 K (1450 °C). A further increase in temperature to 1773 K (1500 °C) resulted in a decrease in the rate and extent of reduction. An increase in the gas flow rate from 0.4 to 0.8 NL/min and an increase in the methane content in the CH4-H2 gas mixture from 0 to 5 vol pct facilitated the reduction. Methane content in the gas mixture should be maintained at less than 5 vol pct in order to suppress methane cracking

    Au+Au Reactions at the AGS: Experiments E866 and E917

    Full text link
    Particle production and correlation functions from Au+Au reactions have been measured as a function of both beam energy (2-10.7AGeV) and impact parameter. These results are used to probe the dynamics of heavy-ion reactions, confront hadronic models over a wide range of conditions and to search for the onset of new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9

    New Quantum Theory of Laser Cooling Mechanisms

    Full text link
    In this paper, we study the laser cooling mechanisms with a new quantum theory approach by applying a new Schrodinger equation, which can describe a particle in conservative and non-conservative force field. With the new theory, we prove the atom in laser field can be cooled, and give the atom cooling temperature, which is accordance with experiment result. Otherwise, we give new prediction that the atom cooling temperature is directly proportional to the atom vibration frequency. By calculation, we find they are: T=0.4334ωT=0.4334\omega.Comment: arXiv admin note: text overlap with arXiv:physics/0601097, arXiv:0710.5078, arXiv:0707.2280 by other authors without attributio

    First-Principles Study of Magnetic Properties of 3dTransition Metals Doped in ZnO Nanowires

    Get PDF
    The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic ions in the ZnO nanowire becomes more difficult with decreasing diameter. We also systematically calculate the ferromagnetic properties of transition metals doped in the ZnO nanowire and bulk, and find that Cr ions of the nanowire favor ferromagnetic state, which is consistent with the experimental results. We also find that the ferromagnetic coupling state of Cr is more stable in the nanowire than in the bulk, which may lead to a higherTcuseful for the nano-materials design of spintronics

    Double-exchange model study of multiferroic RRMnO3_3 perovskites

    Full text link
    In this proceeding, recent theoretical investigations by the authors on the multiferroic RRMnO3_3 perovskites are briefly reviewed at first. Using the double-exchange model, the realistic spiral spin order in undoped manganites such as TbMnO3_3 and DyMnO3_3 is well reproduced by incorporating a weak next-nearest neighbor superexchange (10\sim10% of nearest neighbor superexchange) and moderate Jahn-Teller distortion. The phase transitions from the A-type antiferromagnet (as in LaMnO3_3), to the spiral phase (as in TbMnO3_3), and finally to the E-type antiferromagnet (as in HoMnO3_3), with decreasing size of the RR ions, were also explained. Moreover, new results of phase diagram of the three-dimensional lattice are also included. The ferromagnetic tendency recently discovered in the LaMnO3_3 and TbMnO3_3 thin films is explained by considering the substrate stress. Finally, the relationship between our double-exchange model and a previously used J1J_1-J2J_2-J3J_3 model is further discussed from the perspective of spin wave excitations.Comment: 6 pages, 3 figures; Proceeding of the Workshop on Magnetoelectric Interaction Phenomena in Crystals (MEIPIC-6); To be appeared in European Physical Journal
    corecore