25 research outputs found

    Mobile virtual communities for telemedicine: research challenges and opportunities

    Get PDF
    Today’s mobile devices have become increasingly powerful with enhanced features such as increased CPU power and memory, internet connectivity in multiple ways (multi-homing) and interfacing with external peripheral devices (for instance GPS receiver, medical sensors). The proliferation of these mobile devices combined with an increasing willingness of users to share information available on and around mobile device (e.g. location, user activity) has given rise to Mobile Virtual Communities (MVC). This way, social interaction is now feasible anywhere and anytime. In another paradigm referred to as telemedicine, information and communication technologies are being investigated and employed in areas such as health maintenance and alleviation, cure and prevention of diseases. In general, (mobile) virtual communities have been explored in the telemedicine domain where they were found to be promising in many cases. However, evidence for their effectiveness has yet to be established. With this background and based on our expertise with MVCs and telemedicine, we address a number of aspects including: 1) basic concepts in telemedicine and MVC and analysis of effectiveness and success factors of MVCs in the telemedicine domain; 2) a prototype architecture addressing mobility issues for the MVC in the telemedicine domain; and 3) reflection on the opportunities and research challenges involved in using MVCs in the telemedicine domain

    International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009

    Get PDF
    The results of a surveillance study conducted by the International Nosocomial Infection Control Consortium (INICC) from January 2004 through December 2009 in 422 intensive care units (ICUs) of 36 countries in Latin America, Asia, Africa, and Europe are reported. During the 6-year study period, using Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN; formerly the National Nosocomial Infection Surveillance system [NNIS]) definitions for device-associated health care-associated infections, we gathered prospective data from 313,008 patients hospitalized in the consortium's ICUs for an aggregate of 2,194,897 ICU bed-days. Despite the fact that the use of devices in the developing countries' ICUs was remarkably similar to that reported in US ICUs in the CDC's NHSN, rates of device-associated nosocomial infection were significantly higher in the ICUs of the INICC hospitals; the pooled rate of central line-associated bloodstream infection in the INICC ICUs of 6.8 per 1,000 central line-days was more than 3-fold higher than the 2.0 per 1,000 central line-days reported in comparable US ICUs. The overall rate of ventilator-associated pneumonia also was far higher (15.8 vs 3.3 per 1,000 ventilator-days), as was the rate of catheter-associated urinary tract infection (6.3 vs. 3.3 per 1,000 catheter-days). Notably, the frequencies of resistance of Pseudomonas aeruginosa isolates to imipenem (47.2% vs 23.0%), Klebsiella pneumoniae isolates to ceftazidime (76.3% vs 27.1%), Escherichia coli isolates to ceftazidime (66.7% vs 8.1%), Staphylococcus aureus isolates to methicillin (84.4% vs 56.8%), were also higher in the consortium's ICUs, and the crude unadjusted excess mortalities of device-related infections ranged from 7.3% (for catheter-associated urinary tract infection) to 15.2% (for ventilator-associated pneumonia). Copyright © 2012 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved
    corecore