35 research outputs found

    B2.5-Eunomia simulations of Magnum-PSI detachment experiments: I. Quantitative comparisons with experimental measurements

    Get PDF
    Detachment experiments have been carried out in the linear plasma device Magnum-PSI by increasing the gas pressure near the target. In order to have a proper detailed analysis of the mechanism behind momentum and power loss in detachment, a quantitative match is pursued between B2.5-Eunomia solutions and experimental data. B2.5 is a multi fluid plasma code and Eunomia is a Monte Carlo solver for neutral particles, and they are coupled together to provide steady-state solution of the plasma and neutral distribution in space. B2.5-Eunomia input parameters are adjusted to produce a close replication of the plasma beam measured in the experiments without any gas puffing in the target chamber. Using this replication as an initial condition, the neutral pressure near the plasma beam target is exclusively increased during simulation, matching the pressures measured in the experiments. Reasonable agreement is found between the electron temperature of the simulation results with experimental measurements using laser Thomson scattering near the target. The simulations also reveal the effect of increased gas pressure on the plasma current, effectively reducing the current penetration from the plasma source. B2.5-Eunomia is capable of reproducing detachment characteristics, namely the loss of plasma pressure along the magnetic field and the reduction of particle and heat flux to the target. The simulation results for plasma and neutrals will allow future studies of the exact contribution of individual plasma-neutral collisions to momentum and energy loss in detachment in Magnum-PSI.</p

    The linear plasma generator Magnum-PSI

    No full text

    Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific

    No full text
    The genetic diversity of 255 taro (Colocasia esculenta) accessions from Vietnam, Thailand, Malaysia, Indonesia, the Philippines, Papua New Guinea and Vanuatu was studied using AFLPs. Three AFLP primer combinations generated a total of 465 scorable amplification products. The 255 accessions were grouped according to their country of origin, to their ploidy level (diploid or triploid) and to their habitat—cultivated or wild. Gene diversity within these groups and the genetic distance between these groups were computed. Dendrograms were constructed using UPGMA cluster analysis. In each country, the gene diversity within the groups of wild genotypes was the highest compared to the diploid and triploid cultivars groups. The highest gene diversity was observed for the wild group from Thailand (0.19), the lowest for the diploid cultivars group from Thailand (0.007). In Malaysia there was hardly any difference between the gene diversity of the cultivars and wild groups, 0.07 and 0.08, respectively. The genetic distances between the diploid cultivars groups ranges from 0.02 to 0.10, with the distance between the diploid accessions from Thailand and Malaysia being the highest. The genetic distances between the wild groups range from 0.05 to 0.07. First, a dendrogram was constructed with only the diploids cultivars from all countries. The accessions formed clusters largely according to the country from which they originated. Two major groups of clusters were revealed, one group assembling accessions from Asian countries and the other assembling accessions from the Pacific. Surprisingly, the group of diploid cultivars from Thailand clustered among the Pacific countries. Secondly, a dendrogram was constructed with diploid cultivated, triploid cultivated and wild accessions. Again the division of the accessions into an Asian and a Pacific gene pool is obvious. The presence of two gene pools for cultivated diploid taro has major implications for the breeding and conservation of germplasm

    Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific

    No full text
    The genetic diversity of 255 taro (Colocasia esculenta) accessions from Vietnam, Thailand, Malaysia, Indonesia, the Philippines, Papua New Guinea and Vanuatu was studied using AFLPs. Three AFLP primer combinations generated a total of 465 scorable amplification products. The 255 accessions were grouped according to their country of origin, to their ploidy level (diploid or triploid) and to their habitat—cultivated or wild. Gene diversity within these groups and the genetic distance between these groups were computed. Dendrograms were constructed using UPGMA cluster analysis. In each country, the gene diversity within the groups of wild genotypes was the highest compared to the diploid and triploid cultivars groups. The highest gene diversity was observed for the wild group from Thailand (0.19), the lowest for the diploid cultivars group from Thailand (0.007). In Malaysia there was hardly any difference between the gene diversity of the cultivars and wild groups, 0.07 and 0.08, respectively. The genetic distances between the diploid cultivars groups ranges from 0.02 to 0.10, with the distance between the diploid accessions from Thailand and Malaysia being the highest. The genetic distances between the wild groups range from 0.05 to 0.07. First, a dendrogram was constructed with only the diploids cultivars from all countries. The accessions formed clusters largely according to the country from which they originated. Two major groups of clusters were revealed, one group assembling accessions from Asian countries and the other assembling accessions from the Pacific. Surprisingly, the group of diploid cultivars from Thailand clustered among the Pacific countries. Secondly, a dendrogram was constructed with diploid cultivated, triploid cultivated and wild accessions. Again the division of the accessions into an Asian and a Pacific gene pool is obvious. The presence of two gene pools for cultivated diploid taro has major implications for the breeding and conservation of germplasm

    Advances in Magnum-PSI probe diagnosis in support of plasma-surface interaction studies

    No full text
    Magnum-PSI is a linear plasma generator equipped with a superconducting magnet, assuring fusion devices relevant conditions at plasma–surface interface. The plasma column was diagnosed using 64 probes embedded in the target. The cross-sectional distributions of plasma parameters (floating potential, ion saturation current and electron temperature) were measured for hydrogen and deuterium plasmas under various discharge conditions. The radial profile of the floating potential across the plasma column can be described by a reversed Mexican hat-like wavelet, having the most negative potential at the center of the plasma column. The negativity of the floating potential diminishes when the discharge current increases or the magnetic field decreases. The axial gradient of the floating potential is reduced by increasing the magnetic field. The ion saturation current is maximum at the center of the plasma column, increasing with both the discharge current and magnetic field. The ion flux to the target, estimated from Thomson scattering (TS) data, was confirmed by probe measurements. The electron temperature estimated from the ion branch of the probe current-voltage characteristic is few times larger than that obtained from TS. By increasing the gas pressure in the target chamber, the time-dependent ion saturation current measured by probes changes from a constant average current (when the plasma column is attached to the target) to a fluctuating average current with scattered peaks (in a partially detached regime) which vanishes completely in the fully detached regime. With respect to hydrogen, the plasma column is wider in deuterium and is characterized by less negative floating potential distributions

    Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    No full text
    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 × 1020 m−3 and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m−2 and 1024 m−2 s−1, respectively. We have shown that the plasma surface interactions are dominated by the incoming ions. The achieved conditions correspond very well to the projected conditions at the divertor strike zones of fusion reactors such as ITER. In addition, the machine has an unprecedented high gas efficiency

    Evidence that the reversible strain effect on critical current density and flux pinning in Bi2Sr2Ca2Cu3Ox tapes is caused entirely by the pressure dependence of the critical temperature

    No full text
    It is well known that the critical temperature of cuprate-and iron-based high-temperature superconductors changes with pressure. YBa2Cu3O7-delta coated conductors, as well as Bi2Sr2CaCu2Ox and Bi2Sr2Ca2Cu3Ox tapes and wires, show a clear reversible effect of strain on their current-carrying capability, but no clear understanding about the origin of this effect has been obtained. For the first time, we present evidence that the pressure dependence of the critical temperature is entirely responsible for a reversible change in critical current and magnetic flux pinning in Bi2Sr2Ca2Cu3Ox tapes with strain

    Thermal effects and component cooling in Magnum-PSI

    No full text
    Magnum-PSI is a linear plasma generator, built at the FOM-Institute for Plasma Physics Rijnhuizen. Subject of study will be the interaction of plasma with a diversity of surface materials. The machine is designed to provide an environment with a steady state high-flux plasma (up to 10(24) H(+) ions/m(2) s) in a 3T magnetic field with an exposed surface of 80 cm(2) up to 10 MW/m(2). Magnum-PSI will provide new insights in the complex physics and chemistry that will occur in the divertor region of the future experimental fusion reactor ITER and reactors beyond ITER. The conditions at the surface of the sample can be varied over a wide range, such as plasma temperature, beam diameter, particle flux, inclination angle of the target, background pressure and magnetic field. An important subject of attention in the design of the machine was thermal effects originating in the excess heat and gas flow from the plasma source and radiation from the target. (C) 2011 Elsevier B.V. All rights reserved
    corecore