25 research outputs found

    QCD Green functions in a gluon field

    Full text link
    We formulate a dressed perturbative expansion of QCD, where the standard diagrams are evaluated in the presence of a constant external gluon field whose magnitude is gaussian distributed. The approach is Poincar{\'e} and gauge invariant, and modifies the usual results for hard processes only by power suppressed contributions. Long distance propagation of quarks and gluons turns out to be inhibited due to a branch point singularity instead of a pole at p2=0p^2=0 in the quark and gluon propagators. The dressing keeps the (massless) quarks in q qbar fluctuations of the photon at a finite distance from each other.Comment: 21 pages, 7 figures. Minor modifications in text. Version to be published in JHE

    Vertices and the CJT Effective Potential

    Full text link
    The Cornwall-Jackiw-Tomboulis effective potential is modified to include a functional dependence on the fermion-gauge particle vertex, and applied to a quark confining model of chiral symmetry breaking.Comment: 10 pages (latex), PURD-TH-93-1

    Nonperturbative Aspect of Axial Vector Vertex in the Global Color Symmetry Model

    Get PDF
    It is shown how the axial vector current of current quarks is related to that of constituent quarks within the framework of the global color symmetry model. Gluon dressing of the axial vector vertex and the quark self-energy functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger-Dyson equation in the rainbow approximation, respectively.Comment: 10 page

    Nonperturbative aspects of the quark-photon vertex

    Full text link
    The electromagnetic interaction with quarks is investigated through a relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the quark-photon vertex and the quark self-energy functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger-Dyson equation in the rainbow approximation respectively. Results for the calculation of the quark-photon vertex are presented in both the time-like and space-like regions of photon momentum squared, however emphasis is placed on the space-like region relevant to electron scattering. The treatment presented here simultaneously addresses the role of dynamically generated qqˉq\bar{q} vector bound states and the approach to asymptotic behavior. The resulting description is therefore applicable over the entire range of momentum transfers available in electron scattering experiments. Input parameters are limited to the model gluon two-point function, which is chosen to reflect confinement and asymptotic freedom, and are largely constrained by the obtained bound-state spectrum.Comment: 8 figures available on request by email, 25 pages, Revtex, DOE/ER/40561-131-INT94-00-5

    The π\pi, K+K^+, and K0K^0 electromagnetic form factors

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the meson amplitudes and the dressed quark-photon vertex in a self-consistent Poincar\'e-invariant study of the pion and kaon electromagnetic form factors in impulse approximation. We demonstrate explicitly that the current is conserved in this approach and that the obtained results are independent of the momentum partitioning in the Bethe-Salpeter amplitudes. With model gluon parameters previously fixed by the condensate, the pion mass and decay constant, and the kaon mass, the charge radii and spacelike form factors are found to be in good agreement with the experimental data.Comment: 8 pages, 6 figures, Revte

    Heavy pseudoscalar mesons in a Schwinger-Dyson--Bethe-Salpeter approach

    Full text link
    The mass spectrum of heavy pseudoscalar mesons, described as quark-antiquark bound systems, is considered within the Bethe-Salpeter formalism with momentum-dependent masses of the constituents. This dependence is found by solving the Schwinger-Dyson equation for quark propagators in rainbow-ladder approximation. Such an approximation is known to provide both a fast convergence of numerical methods and accurate results for lightest mesons. However, as the meson mass increases, the method becomes less stable and special attention must be devoted to details of numerical means of solving the corresponding equations. We focus on the pseudoscalar sector and show that our numerical scheme describes fairly accurately the π\pi, KK, DD, DsD_s and ηc\eta_c ground states. Excited states are considered as well. Our calculations are directly related to the future physics programme at FAIR.Comment: 9 pages, 3 figures; Based on materials of the contribution "Relativistic Description of Two- and Three-Body Systems in Nuclear Physics", ECT*, October 19-23, 200

    Diquarks: condensation without bound states

    Full text link
    We employ a bispinor gap equation to study superfluidity at nonzero chemical potential: mu .neq. 0, in two- and three-colour QCD. The two-colour theory, QC2D, is an excellent exemplar: the order of truncation of the quark-quark scattering kernel: K, has no qualitative impact, which allows a straightforward elucidation of the effects of mu when the coupling is strong. In rainbow-ladder truncation, diquark bound states appear in the spectrum of the three-colour theory, a defect that is eliminated by an improvement of K. The corrected gap equation describes a superfluid phase that is semi-quantitatively similar to that obtained using the rainbow truncation. A model study suggests that the width of the superfluid gap and the transition point in QC2D provide reliable quantitative estimates of those quantities in QCD.Comment: 7 pages, 3 figures, REVTEX, epsfi

    Heavy--light mesons in a bilocal effective theory

    Full text link
    Heavy--light mesons are described in an effective quark theory with a two--body vector--type interaction. The bilocal interaction is taken to be instantaneous in the rest frame of the bound state, but formulated covariantly through the use of a boost vector. The chiral symmetry of the light flavor is broken spontaneously at mean field level. The framework for our discussion of bound states is the effective bilocal meson action obtained by bosonization of the quark theory. Mesons are described by 3--dimensional wave functions satisfying Salpeter equations, which exhibit both Goldstone solutions in the chiral limit and heavy--quark symmetry for mQm_Q\rightarrow\infty. We present numerical solutions for pseudoscalar DD-- and BB--mesons. Heavy--light meson spectra and decay constants are seen to be sensitive to the description of chiral symmetry breaking (dynamically generated vs.\ constant quark mass).Comment: (34 p., standard LaTeX, 7 PostScript figures appended) UNITUE-THEP-17/9

    Analysis of a quenched lattice-QCD dressed-quark propagator

    Full text link
    Quenched lattice-QCD data on the dressed-quark Schwinger function can be correlated with dressed-gluon data via a rainbow gap equation so long as that equation's kernel possesses enhancement at infrared momenta above that exhibited by the gluon alone. The required enhancement can be ascribed to a dressing of the quark-gluon vertex. The solutions of the rainbow gap equation exhibit dynamical chiral symmetry breaking and are consistent with confinement. The gap equation and related, symmetry-preserving ladder Bethe-Salpeter equation yield estimates for chiral and physical pion observables that suggest these quantities are materially underestimated in the quenched theory: |<bar-q q>| by a factor of two and f_pi by 30%.Comment: 9 pages, LaTeX2e, REVTEX4, 6 figure
    corecore