1,260 research outputs found

    Vertices and the CJT Effective Potential

    Full text link
    The Cornwall-Jackiw-Tomboulis effective potential is modified to include a functional dependence on the fermion-gauge particle vertex, and applied to a quark confining model of chiral symmetry breaking.Comment: 10 pages (latex), PURD-TH-93-1

    First-principles study of stability and vibrational properties of tetragonal PbTiO_3

    Full text link
    A first-principles study of the vibrational modes of PbTiO_3 in the ferroelectric tetragonal phase has been performed at all the main symmetry points of the Brillouin zone (BZ). The calculations use the local-density approximation and ultrasoft pseudopotentials with a plane-wave basis, and reproduce well the available experimental information on the modes at the Gamma point, including the LO-TO splittings. The work was motivated in part by a previously reported transition to an orthorhombic phase at low temperatures [(J. Kobayashi, Y. Uesu, and Y. Sakemi, Phys. Rev. B {\bf 28}, 3866 (1983)]. We show that a linear coupling of orthorhombic strain to one of the modes at Gamma plays a role in the discussion of the possibility of this phase transition. However, no mechanical instabilities (soft modes) are found, either at Gamma or at any of the other high-symmetry points of the BZ.Comment: 8 pages, two-column style with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#ag_pbt

    Electron localization : band-by-band decomposition, and application to oxides

    Full text link
    Using a plane wave pseudopotential approach to density functional theory we investigate the electron localization length in various oxides. For this purpose, we first set up a theory of the band-by-band decomposition of this quantity, more complex than the decomposition of the spontaneous polarization (a related concept), because of the interband coupling. We show its interpretation in terms of Wannier functions and clarify the effect of the pseudopotential approximation. We treat the case of different oxides: BaO, α\alpha-PbO, BaTiO3_3 and PbTiO3_3. We also investigate the variation of the localization tensor during the ferroelectric phase transitions of BaTiO3_3 as well as its relationship with the Born effective charges

    Neutral H density at the termination shock: a consolidation of recent results

    Full text link
    We discuss a consolidation of determinations of the density of neutral interstellar H at the nose of the termination shock carried out with the use of various data sets, techniques, and modeling approaches. In particular, we focus on the determination of this density based on observations of H pickup ions on Ulysses during its aphelion passage through the ecliptic plane. We discuss in greater detail a novel method of determination of the density from these measurements and review the results from its application to actual data. The H density at TS derived from this analysis is equal to 0.087 \pm 0.022 cm-3, and when all relevant determinations are taken into account, the consolidated density is obtained at 0.09 \pm 0.022 cm-3. The density of H in CHISM based on literature values of filtration factor is then calculated at 0.16 \pm 0.04 cm-3.Comment: Submitted to Space Science Review

    Ab-initio study of BaTiO3 surfaces

    Full text link
    We have carried out first-principles total-energy calculations of (001) surfaces of the tetragonal and cubic phases of BaTiO3. Both BaO-terminated (type I) and TiO2-terminated (type II) surfaces are considered, and the atomic configurations have been fully relaxed. We found no deep-gap surface states for any of the surfaces, in agreement with previous theoretical studies. However, the gap is reduced for the type-II surface, especially in the cubic phase. The surface relaxation energies are found to be substantial, i.e., many times larger than the bulk ferroelectric well depth. Nevertheless, the influence of the surface upon the ferroelectric order parameter is modest; we find only a small enhancement of the ferroelectricity near the surface.Comment: 8 pages, two-column style with 4 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#pad_sur

    Ab initio study of ferroelectric domain walls in PbTiO3

    Full text link
    We have investigated the atomistic structure of the 180-degree and 90-degree domain boundaries in the ferroelectric perovskite compound PbTiO3 using a first-principles ultrasoft-pseudopotential approach. For each case we have computed the position, thickness and creation energy of the domain walls, and an estimate of the barrier height for their motion has been obtained. We find both kinds of domain walls to be very narrow with a similar width of the order of one to two lattice constants. The energy of the 90-dergree domain wall is calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its 180-degree counterpart, and only a miniscule barrier for its motion is found. As a surprising feature we detected a small offset of 0.15-0.2 eV in the electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm

    A systematic review of physical activity promotion strategies

    Get PDF
    This article was first published in:British Journal of Sports Medicine:1996:30:84-89We have reviewed randomised controlled trials of physical activity promotion to provide recent and reliable information on the effectiveness of physical activity promotion. Computerised databases and references of references were searched. Experts were contacted and asked for information about existing work. Studies assessed were randomised controlled trials of healthy, free living, adult subjects, where exercise behaviour was the dependent variable. Eleven trials were identified. No United Kingdom based studies were found. Interventions that encourage walking and do not require attendance at a facility are most likely to lead to sustainable increases in overall physical activity. Brisk walking has the greatest potential for increasing overall activity levels of a sedentary population and meeting current public health recommendations. The small number of trials limits the strength of any conclusions and highlights the need for more research

    Molecular and Cellular Analysis of the DMA Repair Defect in a Patient in Xeroderma Pigmentosum Complementation Group D Who Has the Clinical Features of Xeroderma Pigmentosum and Cockayne Syndrome

    Get PDF
    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are quite distinct genetic disorders that are associated with defects in excision repair of UV-induced DNA damage. A few patients have been described previously with the clinical features of both disorders. In this paper we describe an individual in this category who has unusual cellular responses to UV light. We show that his cultured fibroblasts and lymphocytes are extremely sensitive to irradiation with UV-C, despite a level of nucleotide excision repair that is 30%-40% that of normal cells. The deficiency is assigned to the XP-D complementation group, and we have identified two causative mutations in the XPD gene: a gly→arg change at amino acid 675 in the allele inherited from the patient's mother and a -1 frameshift at amino acid 669 in the allele inherited from his father. These mutations are in the C-terminal 20% of the 760-amino-acid XPD protein, in a region where we have recently identified several mutations in patients with trichothiodystrophy.</p

    Wedgebox analysis of four-lepton events from neutralino pair production at the LHC

    Get PDF
    `Wedgebox' plots constructed by plotting the di-electron invariant mass versus the di-muon invariant mass from pp -> e^+e^- mu^+ mu^- + missing energy signature LHC events. Data sets of such events are obtained across the MSSM input parameter space in event-generator simulations, including cuts designed to remove SM backgrounds. Their study reveals several general features: (1)Regions in the MSSM input parameter space where a sufficient number of events are expected so as to be able to construct a clear wedgebox plot are delineated. (2)The presence of box shapes on a wedgebox plot either indicates the presence of heavy Higgs bosons decays or restricts the location to a quite small region of low \mu and M_2 values \lsim 200 GeV, a region denoted as the `lower island'. In this region, wedgebox plots can be quite complicated and change in pattern rather quickly as one moves around in the (\mu, M_2) plane. (3)Direct neutralino pair production from an intermediate Z^{0*} may only produce a wedge-shape since only \widetilde{\chi}_2^0\widetilde{\chi}_3^0 decays can contribute significantly. (4)A double-wedge or wedge-protruding-from-a-box pattern on a wedgebox plot, which results from combining a variety of MSSM production processes, yields three distinct observed endpoints, almost always attributable to \widetilde{\chi}_{2,3,4}^0 \to \widetilde{\chi}_1^0 \ell^+\ell^- decays, which can be utilized to determine a great deal of information about the neutralino and slepton mass spectra and related MSSM input parameters. Wedge and double-wedge patterns are seen in wedgebox plots in another region of higher \mu and M_2 values, denoted as the`upper island.' Here the pattern is simpler and more stable as one moves across the (\mu, M_2) input parameter space.Comment: 28 pages (LaTeX), 8 figures (encapsulated postscript

    Photoelasticity of crystalline and amorphous silica from first principles

    Full text link
    Based on density-functional perturbation theory we have computed from first principles the photoelastic tensor of few crystalline phases of silica at normal conditions and high pressure (quartz, α\alpha-cristobalite, β\beta-cristobalite) and of models of amorphous silica (containig up to 162 atoms), obtained by quenching from the melt in combined classical and Car-Parrinello molecular dynamics simulations. The computational framework has also been checked on the photoelastic tensor of crystalline silicon and MgO as prototypes of covalent and ionic systems. The agreement with available experimental data is good. A phenomenological model suitable to describe the photoelastic properties of different silica polymorphs is devised by fitting on the ab-initio data.Comment: ten figure
    corecore