22 research outputs found
Advantageous use of metallic cobalt in the target for Pulsed Laser Deposition of cobalt-doped ZnO films
We investigate the magnetic properties of ZnCoO thin films grown by pulsed laser deposition (PLD) from targets made containing metallic Co or CoO precursors instead of the usual Co3O4. We find that the films grown from metallic Co precursors in an oxygen rich environment contain negligible amounts of Co metal, and have a large magnetization at room temperature. Structural analysis by X-ray diffraction and magneto-optical measurements indicate that the enhanced magnetism is due, in part, from Zn vacancies that partially compensate the naturally occurring n-type defects. We conclude that strongly magnetic films of Zn0.95Co0.05O that do not contain metallic cobalt can be grown by PLD from Co-metal-precursor targets if the films are grown in an oxygen atmosphere
Magnetic and magneto-optical properties of films of multiferroic GdMnO3 grown on LSAT [(LaAlO3)0.3 (Sr2AlTaO6)0.7] (100) and (111)
The magnetic properties of multiferroic GdMnO 3 depend on strain which is produced in a thin film by growing an epitaxial film on a suitable substrate. We report an investigation of the magnetic and optical properties of GdMnO 3 , as a function of strain, produced by growing epitaxial films on the substrates on (LaAlO 3 ) 0.3 (Sr 2 AlTaO 6 ) 0.7 (LSAT) (100) and (111). Magnetic measurements have shown that at 5 K the easy direction of the film is in-plane for LSAT (100) and the canted moment is significantly smaller than the value found in bulk material but larger than that found for GdMnO 3 on SrTiO 3 (100). The coercive field of the GdMnO 3 /LSAT (100) has also been found to be smaller than for bulk single crystal samples but comparable to a thinner film of GdMnO 3 grown on SrTiO 3 . The magnetic properties of the film grown on LSAT (111) are very different. The transition to the canted phase is less pronounced and there is no magnetic hysteresis at low temperatures. The susceptibility data are fitted with the Curie's law and the measured magnetic moments for the film on LSAT (100) were similar to bulk values but significantly different for films on LSAT (111) and SrTiO 3 (100). The magnetic circular dichroism spectroscopy showed two features: the charge transfer transition between Mn d states at ~ 2 eV and the band edge transition from the oxygen p band to the d states at ~ 3 eV. Magnetic circular dichroism also shows that the transition at around 2 eV is stronger in LSAT (100) than in LSAT (111) implying that the structure of the film of GdMnO 3 is closer to that of LaMnO 3 when grown on LSAT (100)
Efficient scheme for one-way quantum computing in thermal cavities
We propose a practical scheme for one-way quantum computing based on
efficient generation of 2D cluster state in thermal cavities. We achieve a
controlled-phase gate that is neither sensitive to cavity decay nor to thermal
field by adding a strong classical field to the two-level atoms. We show that a
2D cluster state can be generated directly by making every two atoms collide in
an array of cavities, with numerically calculated parameters and appropriate
operation sequence that can be easily achieved in practical Cavity QED
experiments. Based on a generated cluster state in Box configuration,
we then implement Grover's search algorithm for four database elements in a
very simple way as an example of one-way quantum computing.Comment: 6 pages, 3 figure
Optogalvanic Spectroscopy of Metastable States in Yb^{+}
The metastable ^{2}F_{7/2} and ^{2}D_{3/2} states of Yb^{+} are of interest
for applications in metrology and quantum information and also act as dark
states in laser cooling. These metastable states are commonly repumped to the
ground state via the 638.6 nm ^{2}F_{7/2} -- ^{1}D[5/2]_{5/2} and 935.2 nm
^{2}D_{3/2} -- ^{3}D[3/2]_{1/2} transitions. We have performed optogalvanic
spectroscopy of these transitions in Yb^{+} ions generated in a discharge. We
measure the pressure broadening coefficient for the 638.6 nm transition to be
70 \pm 10 MHz mbar^{-1}. We place an upper bound of 375 MHz/nucleon on the
638.6 nm isotope splitting and show that our observations are consistent with
theory for the hyperfine splitting. Our measurements of the 935.2 nm transition
extend those made by Sugiyama et al, showing well-resolved isotope and
hyperfine splitting. We obtain high signal to noise, sufficient for laser
stabilisation applications.Comment: 8 pages, 5 figure
Demagnetization via Nucleation of the Nonequilibrium Metastable Phase in a Model of Disorder
We study both analytically and numerically metastability and nucleation in a
two-dimensional nonequilibrium Ising ferromagnet. Canonical equilibrium is
dynamically impeded by a weak random perturbation which models homogeneous
disorder of undetermined source. We present a simple theoretical description,
in perfect agreement with Monte Carlo simulations, assuming that the decay of
the nonequilibrium metastable state is due, as in equilibrium, to the
competition between the surface and the bulk. This suggests one to accept a
nonequilibrium "free-energy" at a mesoscopic/cluster level, and it ensues a
nonequilibrium "surface tension" with some peculiar low-T behavior. We
illustrate the occurrence of intriguing nonequilibrium phenomena, including:
(i) Noise-enhanced stabilization of nonequilibrium metastable states; (ii)
reentrance of the limit of metastability under strong nonequilibrium
conditions; and (iii) resonant propagation of domain walls. The cooperative
behavior of our system may also be understood in terms of a Langevin equation
with additive and multiplicative noises. We also studied metastability in the
case of open boundaries as it may correspond to a magnetic nanoparticle. We
then observe burst-like relaxation at low T, triggered by the additional
surface randomness, with scale-free avalanches which closely resemble the type
of relaxation reported for many complex systems. We show that this results from
the superposition of many demagnetization events, each with a well- defined
scale which is determined by the curvature of the domain wall at which it
originates. This is an example of (apparent) scale invariance in a
nonequilibrium setting which is not to be associated with any familiar kind of
criticality.Comment: 26 pages, 22 figure
Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial
Background:
In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936).
Findings:
Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001).
Interpretation:
In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
Background:
Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19.
Methods:
This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.
Findings:
Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79).
Interpretation:
In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes.
Funding:
UK Research and Innovation (Medical Research Council) and National Institute of Health Research
KINETICS OF ORDERING IN EQUI-ATOMIC CoPt ALLOYS
On a recherché le frottement intérieur et le trainage
magnétique qui se trouvent dans un alliage en désordre de CoPt. La gamme de
température était 300K à 840K. Que corrélation étroite a été établie entre le
procédé de mettre en ordre et le changement des procès comportments enélastique
et ferromagnétique. Au dessus de 400K il y a deux procédés qui se passent : la
mise en ordre atomique activée thermiquement et la mis en ordre magnetique. Ces
procédés conduisent à la fois à la diminution temps dépendante de
l'amortissement magnétoelastique et pour la désaccommodation
magnétique.Internal friction and magnetic after-effect have been
investigated in a disordered, equi-atomic CoPt alloy in the temperature range
300K to 840K. A close correlation between the ordering process and the change
of anelastic and ferromagnetic properties has been established. Above 400K two
processes occur : thermally activated atomic and magnetic ordering. These
processes are responsible for the time-dependent decrease of the magnetoelastic
damping and for the magnetic disaccommodation
Fe–N alloy films prepared using a nitrogen atom source
We have studied the magnetic and structural properties of Fe–N alloy films prepared by magnetron sputtering in the presence of a highly reactive beam of atomic nitrogen. The nitrogen content was varied by altering the exposure time of the growing film to the beam. The lowest N content film comprises a pseudo-amorphous phase. As N content is increased this gives way to predominantly single-phase structures of ε-Fe2–3N and ζ-Fe2N, respectively. Differences in the hysteretic behaviour of the samples are attributed to anisotropy properties