107 research outputs found

    Nondestructive measurements of implant-bone interface shear modulus and effects of implant geometry in pull-out tests

    Get PDF
    Push-out and pull-out tests are used for destructive evaluation of implant-bone interface strength. Because nondestructive mechanical tests would allow maintenance of an intact interface for subsequent morphological study, we developed such a test to determine the shear modulus of the interface by measuring the shear deformation of a thin layer adjacent to the implant. A polyurethane foam model was used to test the experimental setup on a group of nine cylindrical implants with three different lengths (15-48 mm) and three different diameters (5-9.7 mm). The shear modulus of the interface, as calculated from the pull-out test, was validated against the shear modulus of the foam derived from tensile tests. The two values of shear modulus were well correlated (R2 = 0.8, p < 0.001), thus encouraging further application of the setup for tests of implant-bone interface mechanics. In addition, we also examined the effects of implant length and diameter. The length of the implants had a significant influence on the interface shear modulus (p < 0.05), indicating that comparisons of the variable should only be made of implants with the same length. The length and diameter of the implants were not critical parameters for the ultimate fixation strength

    The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials

    Get PDF
    Bone resorption around hip stems is a disturbing phenomenon, although its clinical significance and its eventual effects on replacement longevity are as yet uncertain. The relationship between implant flexibility and the extent of bone loss, frequently established in clinical patient series and animal experiments, does suggest that the changes in bone morphology are an effect of stress shielding and a subsequent adaptive remodeling process. This relationship was investigated using strain-adaptive bone-remodeling theory in combination with finite element models to simulate the bone remodeling process. The effects of stem material flexibility, bone flexibility, and bone reactivity on the process and its eventual outcome were studied. Stem flexibility was also related to proximal implant/bone interface stresses. The results sustain the hypothesis that the resorptive processes are an effect of bone adaptation to stress shielding. The effects of stem flexibility are confirmed by the simulation analysis. It was also established that individual differences in bone reactivity and mechanical bone quality (density and stiffness) may account for the individual variations found in patients and animal experiments. Flexible stems reduce stress shielding and bone resorption. However, they increase proximal interface stresses. Hence, the cure against bone resorption they represent may develop into increased loosening rates because of interface debonding and micromotion. The methods presented in this paper can be used to establish optimal stem-design characteristics or check the adequacy of designs in preclinical testing procedures

    Computational strategies for iterative solutions of large fem applications employing voxel data

    Get PDF
    FE-models for structural solid mechanics analyses can be readily generated from computer images via a 'voxel convesion' method, whereby voxels in a two- or three-dimesional computer image are directly translated to elements in a FE-model. The fact that all elements thus generated are the same creates the possibilities for fast solution algorithm that can compensate for a large number of element. The solving methods described in this paper are based on an iterative solving algorithm in combination with a uniqueelement Element-by-Element (EBE) or with a newly developed Row-by-Row (RBR) matrix-vector multiplication strategy. With these methods it is possible to solve FE-models on the order of 105 3-D brick elements on a workstation and on the order of 106 elements on a Cray computer. The methods are demonstrated for the Boussinesq problem and for FF models that represent a porous trabecular bone structure The results show that the RBR method can be 3.2 times faster than the EBE method. It was concluded that the voxel conversion method in combination with these solving methods not only provides a powerful tool to analyse structures that can not be analysed in another way, but also that this approach can be competitive with traditional meshing and solving techniques

    Parallel plate model for trabecular bone exhibits volume fraction-dependent bias

    Get PDF
    Unbiased stereological methods were used in conjunction with microcomputed tomographic (micro-CT) scans of human and animal bone to investigate errors created when the parallel plate model was used to calculate morphometric parameters. Bone samples were obtained from the human proximal tibia, canine distal femur, rat tail, and pig spine and scanned in a micro-CT scanner. Trabecular thickness, trabecular spacing, and trabecular number were calculated using the parallel plate model. Direct thickness, and spacing and connectivity density were calculated using unbiased three-dimensional methods. Both thickness and spacing calculated using the plate model were well correlated to the direct three-dimensional measures (r(2) = 0. 77-0.92). The correlation between trabecular number and connectivity density varied greatly (r(2) = 0.41-0.94). Whereas trabecular thickness was consistently underestimated using the plate model, trabecular spacing was underestimated at low volume fractions and overestimated at high volume fractions. Use of the plate model resulted in a volume-dependent bias in measures of thickness and spacing (p < 0.001). This was a result of the fact that samples of low volume fraction were much more "rod-like" than those of the higher volume fraction. Our findings indicate that the plate model provides biased results, especially when populations with different volume fractions are compared. Therefore, we recommend direct thickness measures when three-dimensional data sets are available

    Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats

    Get PDF
    Mechanical loading has stimulating effects on bone architecture, which can potentially be used as a therapy for osteoporosis. We investigated the skeletal changes in the tibia of ovariectomized rats during treatment with whole body vibration (WBV). Different low-magnitude WBV treatment protocols were tested in a pilot experiment using ovariectomized rats with loading schemes of 2 x 8 min/day, 5 days/ week (n = 2 rats per protocol). Bone volume and architecture were evaluated during a 10 week follow-up using in-vivo microcomputed tomography scanning. The loading protocol in which a 45 Hz sine wave was applied at 2 Hz with an acceleration of 0.5g showed an anabolic effect on bone and was therefore further analyzed in two groups of animals (n = 6 each group) with WBV starting directly after or 3 weeks after ovariectomy and compared to a control (non- WBV) group at 0, 3, 6 and 10 weeks' follow-up. In the follow-up experiment the WBV stimulus did not significantly affect trabecular volume fraction or cortical bone volume in any of the treatment groups during the 10 week follow-up. WBV did reduce weight gain that was induced as a consequence of ovariectomy. We could not demonstrate any significant effects of WBV on bone loss as a consequence of ovariectomy in rats; however, the weight gain that normally results after ovariectomy was partly prevented. Treatment with WBV was not able to prevent bone loss during induced osteoporosis

    Properties of commonly used calcium phosphate cements in trauma and orthopaedic surgery

    Get PDF
    Introduction Half of the population sustains at least one fracture during their lifetime, and the majority of these fractures heal successfully. Successful fracture healing requires the following five elements; (i) osteogenic cells (e.g., osteoblasts), (ii) osteoinductive stimuli (e.g., bone morphogenetic proteins); (iii) an osteoconductive matrix; (iv) adequate blood and nutrient supply, and (v) sufficient mechanical support. One or more elements can be compromised due to the existence of a bone defect. Bone defects are treated with bone grafts in order to avoid insufficient fracture healing. Insufficient fracture healing is encountered in 5–10% of the fractures, resulting in delayed union, malunion, or non-union

    Physiological effects of oral glucosamine on joint health: Current status and consensus on future research priorities

    Get PDF
    The aim of this paper was to provide an overview of the current knowledge and understanding of the potential beneficial physiological effects of glucosamine (GlcN) on joint health. The objective was to reach a consensus on four critical questions and to provide recommendations for future research priorities. To this end, nine scientists from Europe and the United States were selected according to their expertise in this particular field and were invited to participate in the Hohenheim conference held in Aug

    Ultrasonographic tissue characterisation of human Achilles tendons: quantification of tendon structure through a novel non-invasive approach

    Get PDF
    OBJECTIVE: To asses if three-dimensional imaging of the Achilles tendon by Ultrasonographic Tissue Characterisation (UTC) can differentiate between symptomatic and asymptomatic tendons. DESIGN: Case-control study. SETTING: Sports medical department of The Hague medical centre. PATIENTS: Twenty-six tendons from patients with chronic midportion Achilles tendinopathy were included. The "matched" control group consisted of 26 asymptomatic tendons. INTERVENTIONS: Symptomatic and asymptomatic tendons were scanned using the UTC-procedure. One researcher performed the ultrasonographic data-collection. These blinded data were randomised and outcome measures were determined by two independent observers. Main outcome measurements: The raw ultrasonographic images were analysed with a custom-designed algorithm that quantifies the three-dimensional stability of echopatterns, qua intensity and distribution over contiguous transverse images. This three-dimensional stability was related to tendon structure in previous studies. UTC categorizes four different echo-types that represent: I) highly stable; II) medium stable; III) highly variable and IV) constantly low intensity and variable distribution. The percentages of echo-types were calculated and the maximum tendon-thickness was measured. Finally, the inter-observer reliability of UTC was determined. RESULTS: Symptomatic tendons showed less pixels in echo-types I and II than asymptomatic tendons (51.5% versus 76.6%, p<0.001), thus less three-dimensional stability of the echopattern. The mean maximum tendon thickness was 9.2 mm in the symptomatic group and 6.8 mm in the asymptomatic group (p<0.001). The Intra-class Correlation Coefficient (ICC) for the inter-observer reliability of determining the echo-types I+II was 0.95. The ICC for tendon thickness was 0.84. CONCLUSION: UTC can quantitatively evaluate tendon structure and thereby discriminate symptomatic and asymptomatic tendons. As such UTC might be useful to monitor treatment protocols

    FK506 protects against articular cartilage collagenous extra-cellular matrix degradation

    Get PDF
    Objective: Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn) activity through tacrolimus (FK506) in invitro monolayer chondrocytes exerts positive effects on ECM marker expression. This study therefore investigated the effects of FK506 on anabolic and catabolic markers of osteoarthritic chondrocytes in 2D and 3D invitro cultures, and its therapeutic effects in an invivo rat model of OA. Methods: Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic (QPCR) markers were evaluated invitro on isolated (2D) and ECM-embedded chondrocytes (explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. Articular cartilage was analyzed exvivo using contrast enhanced microCT and histology. Results: FK506 treatment of osteoarthritic chondrocytes invitro induced anabolic (mainly collagens) and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly protected ECM integrity invivo by markedly decreasing subchondral sclerosis, less development of subchondral pores, depletion of synovial macrophage activation and lower osteophyte growth. Conclusion: FK506 protected cartilage matrix integrity invitro and invivo. Additionally, FK506 treatment invivo reduced OA-like responses in different articular joint tissues and thereby makes Cn an interesting target for therapeutic intervention of OA
    • …
    corecore