9 research outputs found
Interferon-beta increases plasma ceramides of specific chain length in multiple sclerosis patients, unlike fingolimod or natalizumab
Fingolimod is used for the treatment of multiple sclerosis (MS) and targets receptors for the bioactive sphingolipid sphingosine-1-phosphate (S1P). Whether fingolimod or other MS therapies conversely affect plasma concentrations of sphingolipids has, however, not yet been analyzed. Herein, we quantified 15 representative sphingolipid species by mass spectrometry in plasma from relapsing-remitting MS patients currently under fingolimod (n = 24), natalizumab (n = 16), or IFN-β (n = 18) treatment. Healthy controls (n = 21) and untreated MS patients (n = 11) served as control groups. IFN-ß treatment strongly increased plasma level of C16:0, C18:0, C20:0, and C24:1 ceramides compared to healthy controls, untreated patients, or patients receiving fingolimod or natalizumab medication. Natalizumab treatment increased plasma concentrations of both S1P and sphinganine-1-phosphate, whereas fingolimod treatment did not affect any of these lipids. Correlations of sphingolipids with the Expanded Disability Status Scale and other disease specific parameters revealed no systemic change of sphingolipids in MS, independent of the respective treatment regime. These results indicate type I interferon treatment to cause a strong and specific increase in ceramide level. If confirmed in larger cohorts, these data have implications for the efficacy and adverse effects of IFN-β. Moreover, quantification of ceramides soon after therapy initiation may help to identify therapy-responsive patients
Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: Role of colon barrier integrity
Loss of intestinal barrier functions is a hallmark of inflammatory bowel disease like ulcerative colitis. The molecular mechanisms are not well understood, but likely involve dysregulation of membrane composition, fluidity, and permeability, which are all essentially regulated by sphingolipids, including ceramides of different chain length and saturation. Here, we used a loss-of-function model (CerS2(+/+) and CerS2(-/-) mice) to investigate the impact of ceramide synthase 2, a key enzyme in the generation of very long-chain ceramides, in the dextran sodium salt (DSS) evoked model of UC. CerS2(-/-) mice developed more severe disease than CerS2(+/+) mice in acute DSS and chronic AOM/DSS colitis. Deletion of CerS2 strongly reduced very long-chain ceramides (Cer24: 0, 24: 1) but concomitantly increased long-chain ceramides and sphinganine in plasma and colon tissue. In naive CerS2(-/-) mice, the expression of tight junction proteins including ZO-1 was almost completely lost in the colon epithelium, leading to increased membrane permeability. This could also be observed in vitro in CerS2 depleted Caco-2 cells. The increase in membrane permeability in CerS2(-/-) mice did not manifest with apparent clinical symptoms in naive mice, but with slight inflammatory signs such as an increase in monocytes and IL-10. AOM/DSS and DSS treatment alone led to a further deterioration of membrane integrity and to severe clinical symptoms of the disease. This was associated with stronger upregulation of cytokines in CerS2(-/-) mice and increased infiltration of the colon wall by immune cells, particularly monocytes, CD4(+) and Th17(+) T-cells, and an increase in tumor burden. In conclusion, CerS2 is crucial for the maintenance of colon barrier function and epithelial integrity. CerS2 knockdown, and associated changes in several sphingolipids such as a drop in very long-chain ceramides/(dh)-ceramides, an increase in long-chain ceramides/(dh)-ceramides, and sphinganine in the colon, may weaken endogenous defense against the endogenous microbiome
Sphingosine kinase 2 is a negative regulator of inflammatory macrophage activation
Sphingosine kinases (SPHK) generate the sphingolipid sphingosine-1-phosphate, which, among other functions, is a potent regulator of inflammation. While SPHK1 produces S1P to promote inflammatory signaling, the role of SPHK2 is unclear due to divergent findings in studies utilizing gene depletion versus inhibition of catalytic activity. We sought to clarify how SPHK2 affects inflammatory signaling in human macrophages, which are main regulators of inflammation. SPHK2 expression and activity were rapidly decreased within 6 h upon stimulating primary human macrophages with lipopolysaccharide (LPS), but was upregulated after 24 h. At 24 h following LPS stimulation, targeting SPHK2 with the inhibitor ABC294640, a specific siRNA or by using Sphk2−/− mouse peritoneal macrophages increased inflammatory cytokine production. Downregulation of SPHK2 in primary human macrophages within 6 h of LPS treatment was blocked by inhibiting autophagy. SPHK2 overexpression or inhibiting autophagy 6 h after human macrophage activation with LPS suppressed inflammatory cytokine release. Mechanistically, SPHK2 suppressed LPS-triggered NF-κB activation independent of its catalytic activity and prevented increased mitochondrial ROS formation downstream of LPS. In conclusion, SPHK2 is an anti-inflammatory protein in human macrophages that is inversely coupled to inflammatory cytokine production. This needs consideration when targeting SPHK2 with specific inhibitors
Cancer-induced inflammation and inflammation-induced cancer in colon: A role for S1P lyase
A role of sphingolipids for inflammatory bowel disease and cancer is evident. However, the relative and separate contribution of sphingolipid deterioration in inflammation versus carcinogenesis for the pathophysiology of colitis-associated colon cancer (CAC) was unknown and therefore examined in this study. We performed isogenic bone marrow transplantation of inducible sphingosine-1-phosphate (S1P) lyase knockout mice to specifically modulate sphingolipids and associated genes and proteins in a compartment-specific way in a DSS/AOM mediated CAC model. 3D organoid cultures were used in vitro. S1P lyase (SGPL1) knockout in either immune cells or tissue, caused local sphingolipid accumulation leading to a dichotomic development of CAC: Immune cell SGPL1 knockout (I-SGPL−/−) augmented massive immune cell infiltration initiating colitis with lesions and calprotectin increase. Pathological crypt remodeling plus extracellular S1P-signaling caused delayed tumor formation characterized by S1P receptor 1, STAT3 mRNA increase, as well as programmed cell death ligand 1 expression, accompanied by a putatively counter regulatory STAT1S727 phosphorylation. In contrast, tissue SGPL1 knockout (T-SGPL−/−) provoked immediate occurrence of epithelial-driven tumors with upregulated sphingosine kinase 1, S1P receptor 2 and epidermal growth factor receptor. Here, progressing carcinogenesis was accompanied by an IL-12 to IL-23 shift with a consecutive development of a Th2/GATA3-driven, tumor-favoring microenvironment. Moreover, the knockout models showed distinct lymphopenia and neutrophilia, different from the full SGPL1 knockout. This study shows that depending on the initiating cellular S1P source, the pathophysiology of inflammation-induced cancer versus cancer-induced inflammation develops through separate, discernible molecular steps