813 research outputs found
Recommended from our members
Shielding materials for high-energy neutrons
The authors used the Monte Carlo transport code Los Alamos High-Energy Transport (LAHET) to study the shielding effectiveness of common shielding materials for high-energy neutrons. The source neutron spectrum was from the interaction of an 800-MeV proton beam and iron target. In a normal incident, the neutrons collided with walls made of six common shielding materials: water, concrete, iron, lead, polyethylene, and soil. The walls were of four different thicknesses: 25, 50, 75 and 100 cm. They then tallied the neutron spectra on the other side of the shielding wall and calculated the neutron doses. For the high-Z materials--iron and lead--they find that many neutrons with energies between 1--10 MeV are created when high-energy neutrons interact with shielding materials. For materials containing low-Z elements--water, soil, concrete, and polyethylene--the spectra show higher energy peaks at about 100 MeV. The studies show that for a given wall thickness, concrete is more effective than the other materials. They also studied the effectiveness of combinations of materials, such as concrete and water, concrete and soil, iron and polyethylene, or iron polyethylene and concrete
Recommended from our members
870. 8-keV gamma ray from PuOâ‚‚
A /sup 252/Cf neutron source and an /sup 241/Am alpha source were used with isotopically enriched water containing 43.9% /sup 17/O and 43.1% /sup 18/O, to study the (n,n'UPSILON) and (..cap alpha..,..cap alpha..'UPSILON) reactions in /sup 17/O and /sup 18/O. The production yields for the 870.8-keV gamma ray from /sup 17/O and the 1982.2-keV gamma ray from /sup 18/O were measured. In addition, the average cross sections over the /sup 252/Cf fission neutron spectrum for /sup 17/O(n,n'UPSILON)/sup 17/O and /sup 18/O(n,n'UPSILON)/sup 18/O were determined
Recommended from our members
Moderation of neutron spectra
Most of the accelerators that produce the various microenergetic neutron sources required for low-energy neutron dosimetry studies have been shut down. One alternative to accelerator-produced sources is the use of fission neutron or ({alpha},n) sources with unique neutron spectra. The problem with this solution is that maintenance of these sources is impractical. To help overcome this impracticality, the authors propose the use of moderating materials to produce a variety of spectra using a minimum number of sources. In the study, they performed Monte Carlo transport calculations under the following conditions: transporting neutrons from bare {sup 252}Cf or {sup 241}Am-Be sources from the center of various-sized spheres; tallying neutron spectra at 50 cm from the source. Of the twelve different moderating materials they studied, they found pure copper to be an ideal moderator. In this paper, they present flux-weighted energies, neutron spectra, and dose information for both {sup 252}Cf and {sup 241}Am-Be sources in bare and six-moderator configurations
Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum
Prephenate dehydratase is a key regulatory enzyme in the phenylalanine-specific pathway of Corynebacterium glutamicum. PCR-based random mutagenesis and functional complementation were used to screen for m-fluorophenylalanine (mFP)-resistant mutants. Comparison of the amino acid sequence of the mutant prephenate dehydratases indicated that Ser-99 plays a role in the feedback regulation of the enzyme. When Ser-99 of the wild-type enzyme was replaced by Met, the specific activity of the mutant enzyme was 30% lower than that of the wild-type. The Ser99Met mutant was active in the presence of 50 muM phenylalanine, whereas the wild-type enzyme was not. The functional roles of the eight conserved residues of prephenate dehydratase were investigated by site-directed mutagenesis. Glu64Asp substitution reduced enzyme activity by 15%, with a 4.5- and 1.7-fold increase in K-m and k(cat) values, respectively. Replacement of Thr-183 by either Ala or Tyr resulted in a complete loss of enzyme activity. Substitution of Arg-184 with Leu resulted in a 50% decrease of enzyme activity. The specific activity for Phe185Tyr was more than 96% lower than that of the wild-type, and the K-m value was 26-fold higher. Alterations in the conserved Asp-76, Glu-89, His-115, and Arg-236 residues did not cause a significant change in the K-m and k(cat) values. These results indicated that Glu-64, Thr-183, Arg-184, and Phe-185 residues might be involved in substrate binding and/or catalytic activity
Recommended from our members
A method for characterizing photon radiation fields
Uncertainty in dosimetric and exposure rate measurements can increase in areas where multi-directional and low-energy photons (< 100 keV) exist because of variations in energy and angular measurement response. Also, accurate measurement of external exposures in spatially non-uniform fields may require multiple dosimetry. Therefore, knowledge of the photon fields in the workplace is required for full understanding of the accuracy of dosimeters and instruments, and for determining the need for multiple dosimeters. This project was designed to develop methods to characterize photon radiation fields in the workplace, and to test the methods in a plutonium facility. The photon field at selected work locations was characterized using TLDs and a collimated NaI(Tl) detector from which spatial variations in photon energy distributions were calculated from measured spectra. Laboratory results showed the accuracy and utility of the method. Field measurement results combined with observed work patterns suggested the following: (1) workers are exposed from all directions, but not isotropically, (2) photon energy distributions were directionally dependent, (3) stuffing nearby gloves into the glovebox reduced exposure rates significantly, (4) dosimeter placement on the front of the chest provided for a reasonable estimate of the average dose equivalent to workers` torsos, (5) justifiable conclusions regarding the need for multiple dosimetry can be made using this quantitative method, and (6) measurements of the exposure rates with ionization chambers pointed with open beta windows toward the glovebox provided the highest measured rates, although absolute accuracy of the field measurements still needs to be assessed
Roles of insulin-like growth factor II in cardiomyoblast apoptosis and in hypertensive rat heart with abdominal aorta ligation
Although IGF-II activating the IGF-II receptor signaling pathway has been found to stimulate cardiomyocyte hypertrophy, the role of IGF-II in cardiac cell apoptosis remains unclear. This study aimed to identify the roles of IGF-II and/or IGF-II receptors (IGF-II/IIR) in cardiomyoblast apoptosis and in hypertensive rat hearts with abdominal aorta ligation. Cultured rat heart-derived H9c2 cardiomyoblasts and excised hearts from Sprague-Dawley rats with 0- to 20-day complete abdominal aorta ligation, a model of ANG II elevation and hypertension, were used. IGF-II/IIR expression, caspase activity, DNA fragmentation, and apoptotic cells were measured by RT-PCR, Western blot, agarose gel electrophoresis, and TUNEL assay following various combinations of ANG II, IGF-II/IIR antibody, CsA (calcineurin inhibitor), SP-600125 (JNK inhibitor), SB-203580 (p38 inhibitor), U-0126 (MEK inhibitor), or Staurosporine (PKC inhibitor) in H9c2 cells. ANG II-induced DNA fragmentation and TUNEL-positive cells were blocked by IGF-II/IIR antibodies and antisense IGF-II, but not by IGF-II sense. IGF-II-induced apoptosis was blocked by IGF-IIR antibody and CsA. The increased gene expressions of IGF-II and -IIR induced by ANG II were reversed by U-0126 and Sp600125, respectively. Caspase 8 activities induced by ANG II were attenuated by U-0126, SP-600125, and CsA. DNA fragmentation induced by ANG II was totally blocked by SP-600125, and CsA and was attenuated by U-0126. In rats with 0- to 20-day complete abdominal aorta ligation, the increases in IGF-II/IIR levels in the left ventricle were accompanied by hypertension as well as increases in caspase 9 activities and TUNEL-positive cardiac myocytes. ANG II-induced apoptosis was reversed by IGF-II/IIR blockade and coexisted with increased transactivation of IGF-II and -IIR, which are mediated by ERK and JNK pathways, respectively, both of which further contributed to cardiomyoblast apoptosis via calcineurin signaling. The increased cardiac IGF-II, IGF-IIR, caspase 9, and cellular apoptosis were also found in hypertensive rats with abdominal aorta ligation
Role of calcineurin in Porphyromonas gingivalis-induced myocardial cell hypertrophy and apoptosis
Background and objective: Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) increased cardiomyocyte hypertrophy and apoptosis whereas Actinobaeillus actinomycetemcomitans and Prevotella intermedia had no effects. The purpose of this study is to clarify the role of calcineurin signaling pathway in P. gingivalis-induced H9c2 myocardial cell hypertrophy and apoptosis. Methods: DNA fragmentation, nuclear condensation, cellular morphology, calcineurin protein, Bcl2- associated death promoter (Bad) and nuclear factor of activated T cell (NFAT)-3 protein products in cultured H9c2 myocardial cell were measured by agarose gel electrophoresis, DAPI, immunofluorescence, and Western blotting following P. gingivalis and/or pre-administration of CsA (calcineurin inhibitors cyclosporin A). Results: P. gingivalis not only increased calcineurin protein, NFAT-3 protein products and cellular hypertrophy, but also increased DNA fragmentation, nuclear condensation and Bad protein products in H9c2 cells. The increased cellular sizes, DNA fragmentation, nuclear condensation, and Bad of H9c2 cells treated with P. gingivalis were all significantly reduced after pre-administration of CsA. Conclusion: Our findings suggest that the activity of calcineurin signal pathway may be initiated by P. gingivalis and further lead to cell hypertrophy and death in culture H9c2 myocardial cells
Competing Orders in Coupled Luttinger Liquids
We consider the problem of two coupled Luttinger liquids both at half filling
and at low doping levels, to investigate the problem of competing orders in
quasi-one-dimensional strongly correlated systems. We use bosonization and
renormalization group equations to investigate the phase diagrams, to determine
the allowed phases and to establish approximate boundaries among them. Because
of the chiral translation and reflection symmetry in the charge mode away from
half filling, orders of charge density wave (CDW) and spin-Peierls (SP)
diagonal current (DC) and -density wave (DDW) form two doublets and thus can
be at most quasi-long range ordered. At half-filling, umklapp terms break this
symmetry down to a discrete group and thus Ising-type ordered phases appear as
a result of spontaneous breaking of the residual symmetries. Quantum disordered
Haldane phases are also found, with finite amplitudes of pairing orders and
triplet counterparts of CDW, SP, DC and DDW. Relations with recent numerical
results and implications to similar problems in two dimensions are discussed.Comment: 16 pages, 5 figures, 4 tables. Revised manuscript; a misprint in Eq.
B3 has been corrected. The paper is already in print in PR
The profile of cardiac cytochrome c oxidase (COX) expression in an accelerated cardiac-hypertrophy model
The contribution of the mitochondrial components, the main source of energy for the cardiac hypertrophic growth induced by pressure overload, is not well understood. In the present study, complete coarctation of abdominal aorta was used to induce the rapid development of cardiac hypertrophy in rats. One to two days after surgery, we observed significantly higher blood pressure and cardiac hypertrophy, which remained constantly high afterwards. We found an early increased level of cytochrome c oxidase ( COX) mRNA determined by in-situ hybridization and dot blotting assays in the hypertrophied hearts, and a drop to the baseline 20 days after surgery. Similarly, mitochondrial COX protein level and enzyme activity increased and, however, dropped even lower than baseline 20 days following surgery. In addition, in natural hypertension- induced hypertrophic hearts in genetically hypertensive rats, the COX protein was significantly lower than in normotensive rats. Taken together, the lower efficiency of mitochondrial activity in the enlarged hearts of long-term complete coarcted rats or genetically hypertensive rats could be, at least partially, the cause of hypertensive cardiac disease. Additionally, the rapid complete coarctation-induced cardiac hypertrophy was accompanied by a disproportionate COX activity increase, which was suggested to maintain the cardiac energy-producing capacity in overloaded hearts
Time-Dependent Fatigue Crack Propagation Behavior of Two Solid-Solution-Strengthened Ni-Based Superalloys—INCONEL 617 and HAYNES 230
The fatigue crack propagation (FCP) as well as the sustained loading crack growth (SLCG) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 (Special Metals Corporation Family of Companies) and HAYNES 230 (Haynes International, Inc., Kokomo, IN), were studied at increased temperatures in laboratory air under a constant stress-intensity- factor (K) condition. The crack propagation tests were conducted using a baseline cyclic triangular waveform with a frequency of 1 3 Hz. Various hold times were imposed at the maximum load of a fatigue cycle to study the hold time effect. The results show that a linear elastic fracture mechanics (LEFM) parameter, stress intensity factor (K), is sufficient to describe the FCP and SLCG behavior at the testing temperatures ranging from 873 K to 1073 K (600 C to 800 C). As observed in the precipitation-strengthened superalloys, both INCONEL 617 and HAYNES 230 exhibited the time-dependent FCP, steady SLCG behavior, and existence of a damage zone ahead of crack tip. A thermodynamic equation was adapted to correlate the SLCG rates to determine thermal activation energy. The fracture modes associated with crack propagation behavior were discussed, and the mechanism of time-dependent FCP as well as SLCG was identified. Compared with INCONEL 617, the lower crack propagation rates of HAYNES 230 under the time-dependent condition were ascribed to the different fracture mode and the presence of numerous W-rich M6C-type and Cr-rich M23C6-type carbides. Toward the end, a phenomenological model was employed to correlate the FCP rates at cycle/time-dependent FCP domain. All the results suggest that an environmental factor, the stress assisted grain boundary oxygen embrittlement (SAGBOE) mechanism, is mainly responsible for the accelerated time dependent FCP rates of INCONEL 617 and HAYNES 230
- …